File size: 3,219 Bytes
3f99667
 
 
 
f657da9
 
 
3f99667
 
 
 
 
 
 
 
 
 
 
 
f657da9
 
 
 
 
3f99667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719d74b
3f99667
 
 
 
 
 
f657da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f99667
 
 
e76daba
ef06c10
3f99667
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: esp-to-lsm-model-split
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# esp-to-lsm-model-split

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-es](https://huggingface.co./Helsinki-NLP/opus-mt-es-es) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5258
- Bleu: 83.8782
- Ter: 10.6805
- Rouge1: 0.9238
- Rouge2: 0.8539

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00015
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    | Ter     | Rouge1 | Rouge2 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:------:|
| 1.0312        | 1.0   | 75   | 0.6799          | 70.9487 | 17.7958 | 0.8736 | 0.7858 |
| 0.4186        | 2.0   | 150  | 0.4926          | 50.7542 | 12.2855 | 0.9190 | 0.8516 |
| 0.2945        | 3.0   | 225  | 0.4174          | 72.8458 | 17.0732 | 0.9290 | 0.8649 |
| 0.1752        | 4.0   | 300  | 0.4505          | 81.4327 | 10.3884 | 0.9254 | 0.8485 |
| 0.1483        | 5.0   | 375  | 0.4863          | 39.1763 | 10.7498 | 0.9139 | 0.8411 |
| 0.1049        | 6.0   | 450  | 0.4795          | 81.2675 | 10.0271 | 0.9250 | 0.8572 |
| 0.0808        | 7.0   | 525  | 0.4824          | 80.2681 | 11.9241 | 0.9145 | 0.8251 |
| 0.0723        | 8.0   | 600  | 0.4388          | 83.9041 | 11.0208 | 0.9308 | 0.8690 |
| 0.0652        | 9.0   | 675  | 0.4277          | 85.0942 | 9.3948  | 0.9306 | 0.8718 |
| 0.0469        | 10.0  | 750  | 0.4310          | 84.8003 | 9.2141  | 0.9337 | 0.8766 |
| 0.043         | 11.0  | 825  | 0.4471          | 84.1771 | 9.9368  | 0.9297 | 0.8669 |
| 0.0278        | 12.0  | 900  | 0.4326          | 86.4289 | 8.5818  | 0.9404 | 0.8829 |
| 0.0258        | 13.0  | 975  | 0.4369          | 85.7966 | 8.7624  | 0.9363 | 0.8772 |
| 0.0258        | 14.0  | 1050 | 0.4296          | 86.5295 | 8.4914  | 0.9393 | 0.8856 |
| 0.0216        | 15.0  | 1125 | 0.4379          | 78.3156 | 14.7245 | 0.9321 | 0.8710 |
| 0.0132        | 16.0  | 1200 | 0.4400          | 87.1342 | 8.0397  | 0.9392 | 0.8839 |
| 0.0129        | 17.0  | 1275 | 0.4438          | 86.9282 | 8.1301  | 0.9383 | 0.8831 |
| 0.0109        | 18.0  | 1350 | 0.4445          | 86.7807 | 8.4914  | 0.9372 | 0.8813 |
| 0.0109        | 19.0  | 1425 | 0.4455          | 86.7006 | 8.4914  | 0.9371 | 0.8808 |
| 0.014         | 20.0  | 1500 | 0.4472          | 86.8515 | 8.3107  | 0.9378 | 0.882  |


### Framework versions

- Transformers 4.26.1
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.13.3