vania2911 commited on
Commit
ef06c10
·
1 Parent(s): b921e52

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -25
README.md CHANGED
@@ -17,10 +17,10 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-es](https://huggingface.co/Helsinki-NLP/opus-mt-es-es) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.4579
21
- - Bleu: 84.7291
22
- - Rouge: {'rouge1': 0.933888660903367, 'rouge2': 0.8692890812890814, 'rougeL': 0.9314010434010438, 'rougeLsum': 0.9319776073599606}
23
- - Ter Score: 9.4851
24
 
25
  ## Model description
26
 
@@ -52,31 +52,31 @@ The following hyperparameters were used during training:
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Ter Score |
54
  |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------------------------------------------------------------------------------------------------------------------------:|:---------:|
55
- | 0.997 | 1.0 | 75 | 0.6809 | 42.0267 | {'rouge1': 0.898181838256916, 'rouge2': 0.8130523022728905, 'rougeL': 0.8946140646075633, 'rougeLsum': 0.893873212952625} | 30.1716 |
56
- | 0.4353 | 2.0 | 150 | 0.4824 | 50.8852 | {'rouge1': 0.9143035767101659, 'rouge2': 0.8389870659785916, 'rougeL': 0.9111714910374131, 'rougeLsum': 0.9105271822996931} | 12.1951 |
57
- | 0.2602 | 3.0 | 225 | 0.4378 | 47.9454 | {'rouge1': 0.9120039571539572, 'rouge2': 0.8338494922268507, 'rougeL': 0.9097821028644562, 'rougeLsum': 0.9090391944112535} | 15.8988 |
58
- | 0.2316 | 4.0 | 300 | 0.4288 | 51.1777 | {'rouge1': 0.9191870944330145, 'rouge2': 0.8416048298679879, 'rougeL': 0.9152349895089613, 'rougeLsum': 0.9148874369582463} | 11.8338 |
59
- | 0.1203 | 5.0 | 375 | 0.4392 | 59.6817 | {'rouge1': 0.9195605018894281, 'rouge2': 0.8549742393210138, 'rougeL': 0.9157923424889157, 'rougeLsum': 0.915821833619999} | 29.9006 |
60
- | 0.1216 | 6.0 | 450 | 0.4724 | 80.5000 | {'rouge1': 0.9194822769822768, 'rouge2': 0.8468780663780664, 'rougeL': 0.9178839433986494, 'rougeLsum': 0.917927447824507} | 10.9304 |
61
- | 0.0754 | 7.0 | 525 | 0.3970 | 71.3369 | {'rouge1': 0.929947840830194, 'rouge2': 0.8740860435860436, 'rougeL': 0.9283082951906484, 'rougeLsum': 0.9280234781558313} | 9.0334 |
62
- | 0.0848 | 8.0 | 600 | 0.4286 | 82.2980 | {'rouge1': 0.9197141393464923, 'rouge2': 0.8435642135642136, 'rougeL': 0.9171007636154698, 'rougeLsum': 0.9173583546083546} | 10.0271 |
63
- | 0.0504 | 9.0 | 675 | 0.4232 | 80.7048 | {'rouge1': 0.9252793410293412, 'rouge2': 0.8645127187627188, 'rougeL': 0.9225632161955696, 'rougeLsum': 0.9223215074685663} | 11.5628 |
64
- | 0.0367 | 10.0 | 750 | 0.4399 | 84.6759 | {'rouge1': 0.9349642949642951, 'rouge2': 0.8709240019240019, 'rougeL': 0.9325950471097532, 'rougeLsum': 0.932344419741479} | 9.3044 |
65
- | 0.0386 | 11.0 | 825 | 0.4219 | 85.1316 | {'rouge1': 0.9319647204647208, 'rouge2': 0.8670846560846559, 'rougeL': 0.9293213175713174, 'rougeLsum': 0.9294803872597992} | 9.3044 |
66
- | 0.0377 | 12.0 | 900 | 0.4515 | 85.0469 | {'rouge1': 0.9375483546954139, 'rouge2': 0.8714725274725272, 'rougeL': 0.9351436635260167, 'rougeLsum': 0.9353887332710864} | 9.0334 |
67
- | 0.0244 | 13.0 | 975 | 0.4432 | 85.4228 | {'rouge1': 0.9349379803203334, 'rouge2': 0.8742061087061088, 'rougeL': 0.9324708934855994, 'rougeLsum': 0.9326558028028616} | 9.0334 |
68
- | 0.0237 | 14.0 | 1050 | 0.4443 | 83.3661 | {'rouge1': 0.9285636063283123, 'rouge2': 0.8593995911495913, 'rougeL': 0.9261539881686944, 'rougeLsum': 0.9264242952037072} | 9.9368 |
69
- | 0.0173 | 15.0 | 1125 | 0.4489 | 83.5351 | {'rouge1': 0.9334836693807282, 'rouge2': 0.8670622895622895, 'rougeL': 0.9310492671816202, 'rougeLsum': 0.9315272293066414} | 9.4851 |
70
- | 0.0193 | 16.0 | 1200 | 0.4544 | 85.3754 | {'rouge1': 0.9346484381631441, 'rouge2': 0.8730811688311688, 'rougeL': 0.9323903906550965, 'rougeLsum': 0.933181806211218} | 9.1238 |
71
- | 0.0184 | 17.0 | 1275 | 0.4563 | 84.8526 | {'rouge1': 0.9348964232934824, 'rouge2': 0.8686600066600066, 'rougeL': 0.9324455794749915, 'rougeLsum': 0.9328274704598236} | 9.3948 |
72
- | 0.0142 | 18.0 | 1350 | 0.4539 | 84.8025 | {'rouge1': 0.9328790517761109, 'rouge2': 0.8668323713323711, 'rougeL': 0.9306599712923247, 'rougeLsum': 0.9311140156140161} | 9.3044 |
73
- | 0.0131 | 19.0 | 1425 | 0.4583 | 85.0705 | {'rouge1': 0.935153999051058, 'rouge2': 0.8696035353535354, 'rougeL': 0.9326587181881301, 'rougeLsum': 0.9330992852463443} | 9.1238 |
74
- | 0.0122 | 20.0 | 1500 | 0.4579 | 84.7291 | {'rouge1': 0.933888660903367, 'rouge2': 0.8692890812890814, 'rougeL': 0.9314010434010438, 'rougeLsum': 0.9319776073599606} | 9.4851 |
75
 
76
 
77
  ### Framework versions
78
 
79
  - Transformers 4.26.1
80
  - Pytorch 2.4.1+cu121
81
- - Datasets 3.0.1
82
  - Tokenizers 0.13.3
 
17
 
18
  This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-es](https://huggingface.co/Helsinki-NLP/opus-mt-es-es) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.5690
21
+ - Bleu: 83.5807
22
+ - Rouge: {'rouge1': 0.9265753592812418, 'rouge2': 0.8656694324194325, 'rougeL': 0.9238164847135437, 'rougeLsum': 0.9238003663003664}
23
+ - Ter Score: 10.0090
24
 
25
  ## Model description
26
 
 
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Ter Score |
54
  |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------------------------------------------------------------------------------------------------------------------------:|:---------:|
55
+ | 0.997 | 1.0 | 75 | 0.7578 | 74.2121 | {'rouge1': 0.8930136077372922, 'rouge2': 0.8132252290193469, 'rougeL': 0.8868313923778324, 'rougeLsum': 0.8866414102466736} | 16.3210 |
56
+ | 0.4353 | 2.0 | 150 | 0.5659 | 50.7443 | {'rouge1': 0.9142509364274071, 'rouge2': 0.83197113997114, 'rougeL': 0.9055773276287983, 'rougeLsum': 0.9062817797670736} | 12.8043 |
57
+ | 0.2602 | 3.0 | 225 | 0.5444 | 72.0122 | {'rouge1': 0.9183889862860454, 'rouge2': 0.8433486969005839, 'rougeL': 0.9132635343958876, 'rougeLsum': 0.913651539908893} | 15.9603 |
58
+ | 0.2316 | 4.0 | 300 | 0.5503 | 50.9502 | {'rouge1': 0.9147289323852568, 'rouge2': 0.8403040453698347, 'rougeL': 0.9084138578656601, 'rougeLsum': 0.9084760810455303} | 13.0748 |
59
+ | 0.1203 | 5.0 | 375 | 0.5211 | 58.7666 | {'rouge1': 0.9278827629661555, 'rouge2': 0.8655444837508406, 'rougeL': 0.922415336132431, 'rougeLsum': 0.9224576705147474} | 29.6664 |
60
+ | 0.1216 | 6.0 | 450 | 0.5491 | 81.6262 | {'rouge1': 0.9206053007450066, 'rouge2': 0.8534470899470898, 'rougeL': 0.9171148252618841, 'rougeLsum': 0.9168772093919156} | 11.0911 |
61
+ | 0.0754 | 7.0 | 525 | 0.5095 | 83.4616 | {'rouge1': 0.9305456776339132, 'rouge2': 0.8778395262145262, 'rougeL': 0.9280110015257075, 'rougeLsum': 0.9281936805025043} | 10.0090 |
62
+ | 0.0848 | 8.0 | 600 | 0.5538 | 81.8681 | {'rouge1': 0.9248025063172123, 'rouge2': 0.8648207579457581, 'rougeL': 0.9219360612154733, 'rougeLsum': 0.921904937654938} | 10.4599 |
63
+ | 0.0504 | 9.0 | 675 | 0.5390 | 80.8118 | {'rouge1': 0.9217618560633272, 'rouge2': 0.8611767121767122, 'rougeL': 0.9194047336106163, 'rougeLsum': 0.9196579346579348} | 12.3535 |
64
+ | 0.0367 | 10.0 | 750 | 0.5632 | 82.2896 | {'rouge1': 0.9241220549602904, 'rouge2': 0.8623059255559258, 'rougeL': 0.921636625901332, 'rougeLsum': 0.9214262796027506} | 10.8206 |
65
+ | 0.0386 | 11.0 | 825 | 0.5325 | 83.7819 | {'rouge1': 0.9264862667289138, 'rouge2': 0.8665701058201061, 'rougeL': 0.924734155278273, 'rougeLsum': 0.9247572857425799} | 10.2795 |
66
+ | 0.0377 | 12.0 | 900 | 0.5540 | 83.6969 | {'rouge1': 0.9270570480717542, 'rouge2': 0.8649807692307694, 'rougeL': 0.9248777127012422, 'rougeLsum': 0.9247459680842035} | 10.0090 |
67
+ | 0.0244 | 13.0 | 975 | 0.5462 | 83.4825 | {'rouge1': 0.9284353783471431, 'rouge2': 0.8673707311207314, 'rougeL': 0.9249773075508372, 'rougeLsum': 0.924672456084221} | 9.9188 |
68
+ | 0.0237 | 14.0 | 1050 | 0.5468 | 83.3820 | {'rouge1': 0.9267599383187618, 'rouge2': 0.8631084656084658, 'rougeL': 0.9244043657867187, 'rougeLsum': 0.9240160215601393} | 10.0992 |
69
+ | 0.0173 | 15.0 | 1125 | 0.5604 | 82.7936 | {'rouge1': 0.9260569985569987, 'rouge2': 0.8652394179894183, 'rougeL': 0.923313301078007, 'rougeLsum': 0.9233026695526696} | 10.1894 |
70
+ | 0.0193 | 16.0 | 1200 | 0.5689 | 85.1028 | {'rouge1': 0.9298936104744928, 'rouge2': 0.874325396825397, 'rougeL': 0.9280833015024192, 'rougeLsum': 0.9275536633845459} | 9.6483 |
71
+ | 0.0184 | 17.0 | 1275 | 0.5695 | 83.7781 | {'rouge1': 0.9266896553881849, 'rouge2': 0.8650757020757022, 'rougeL': 0.924688972247796, 'rougeLsum': 0.9245597692068284} | 10.2795 |
72
+ | 0.0142 | 18.0 | 1350 | 0.5655 | 83.6649 | {'rouge1': 0.925748337718926, 'rouge2': 0.8645625300625305, 'rougeL': 0.9233836055012529, 'rougeLsum': 0.9233253614577146} | 10.0090 |
73
+ | 0.0131 | 19.0 | 1425 | 0.5701 | 83.6843 | {'rouge1': 0.9268515199397553, 'rouge2': 0.8660478595478597, 'rougeL': 0.9242069248833956, 'rougeLsum': 0.9242629070276129} | 9.9188 |
74
+ | 0.0122 | 20.0 | 1500 | 0.5690 | 83.5807 | {'rouge1': 0.9265753592812418, 'rouge2': 0.8656694324194325, 'rougeL': 0.9238164847135437, 'rougeLsum': 0.9238003663003664} | 10.0090 |
75
 
76
 
77
  ### Framework versions
78
 
79
  - Transformers 4.26.1
80
  - Pytorch 2.4.1+cu121
81
+ - Datasets 3.0.2
82
  - Tokenizers 0.13.3