update model card README.md
Browse files
README.md
CHANGED
@@ -17,10 +17,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-es](https://huggingface.co/Helsinki-NLP/opus-mt-es-es) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Bleu:
|
22 |
-
- Rouge: {'rouge1': 0.
|
23 |
-
- Ter Score:
|
24 |
|
25 |
## Model description
|
26 |
|
@@ -52,31 +52,31 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Ter Score |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------------------------------------------------------------------------------------------------------------------------:|:---------:|
|
55 |
-
| 0.997 | 1.0 | 75 | 0.
|
56 |
-
| 0.4353 | 2.0 | 150 | 0.
|
57 |
-
| 0.2602 | 3.0 | 225 | 0.
|
58 |
-
| 0.2316 | 4.0 | 300 | 0.
|
59 |
-
| 0.1203 | 5.0 | 375 | 0.
|
60 |
-
| 0.1216 | 6.0 | 450 | 0.
|
61 |
-
| 0.0754 | 7.0 | 525 | 0.
|
62 |
-
| 0.0848 | 8.0 | 600 | 0.
|
63 |
-
| 0.0504 | 9.0 | 675 | 0.
|
64 |
-
| 0.0367 | 10.0 | 750 | 0.
|
65 |
-
| 0.0386 | 11.0 | 825 | 0.
|
66 |
-
| 0.0377 | 12.0 | 900 | 0.
|
67 |
-
| 0.0244 | 13.0 | 975 | 0.
|
68 |
-
| 0.0237 | 14.0 | 1050 | 0.
|
69 |
-
| 0.0173 | 15.0 | 1125 | 0.
|
70 |
-
| 0.0193 | 16.0 | 1200 | 0.
|
71 |
-
| 0.0184 | 17.0 | 1275 | 0.
|
72 |
-
| 0.0142 | 18.0 | 1350 | 0.
|
73 |
-
| 0.0131 | 19.0 | 1425 | 0.
|
74 |
-
| 0.0122 | 20.0 | 1500 | 0.
|
75 |
|
76 |
|
77 |
### Framework versions
|
78 |
|
79 |
- Transformers 4.26.1
|
80 |
- Pytorch 2.4.1+cu121
|
81 |
-
- Datasets 3.0.
|
82 |
- Tokenizers 0.13.3
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-es](https://huggingface.co/Helsinki-NLP/opus-mt-es-es) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5690
|
21 |
+
- Bleu: 83.5807
|
22 |
+
- Rouge: {'rouge1': 0.9265753592812418, 'rouge2': 0.8656694324194325, 'rougeL': 0.9238164847135437, 'rougeLsum': 0.9238003663003664}
|
23 |
+
- Ter Score: 10.0090
|
24 |
|
25 |
## Model description
|
26 |
|
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Ter Score |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------------------------------------------------------------------------------------------------------------------------:|:---------:|
|
55 |
+
| 0.997 | 1.0 | 75 | 0.7578 | 74.2121 | {'rouge1': 0.8930136077372922, 'rouge2': 0.8132252290193469, 'rougeL': 0.8868313923778324, 'rougeLsum': 0.8866414102466736} | 16.3210 |
|
56 |
+
| 0.4353 | 2.0 | 150 | 0.5659 | 50.7443 | {'rouge1': 0.9142509364274071, 'rouge2': 0.83197113997114, 'rougeL': 0.9055773276287983, 'rougeLsum': 0.9062817797670736} | 12.8043 |
|
57 |
+
| 0.2602 | 3.0 | 225 | 0.5444 | 72.0122 | {'rouge1': 0.9183889862860454, 'rouge2': 0.8433486969005839, 'rougeL': 0.9132635343958876, 'rougeLsum': 0.913651539908893} | 15.9603 |
|
58 |
+
| 0.2316 | 4.0 | 300 | 0.5503 | 50.9502 | {'rouge1': 0.9147289323852568, 'rouge2': 0.8403040453698347, 'rougeL': 0.9084138578656601, 'rougeLsum': 0.9084760810455303} | 13.0748 |
|
59 |
+
| 0.1203 | 5.0 | 375 | 0.5211 | 58.7666 | {'rouge1': 0.9278827629661555, 'rouge2': 0.8655444837508406, 'rougeL': 0.922415336132431, 'rougeLsum': 0.9224576705147474} | 29.6664 |
|
60 |
+
| 0.1216 | 6.0 | 450 | 0.5491 | 81.6262 | {'rouge1': 0.9206053007450066, 'rouge2': 0.8534470899470898, 'rougeL': 0.9171148252618841, 'rougeLsum': 0.9168772093919156} | 11.0911 |
|
61 |
+
| 0.0754 | 7.0 | 525 | 0.5095 | 83.4616 | {'rouge1': 0.9305456776339132, 'rouge2': 0.8778395262145262, 'rougeL': 0.9280110015257075, 'rougeLsum': 0.9281936805025043} | 10.0090 |
|
62 |
+
| 0.0848 | 8.0 | 600 | 0.5538 | 81.8681 | {'rouge1': 0.9248025063172123, 'rouge2': 0.8648207579457581, 'rougeL': 0.9219360612154733, 'rougeLsum': 0.921904937654938} | 10.4599 |
|
63 |
+
| 0.0504 | 9.0 | 675 | 0.5390 | 80.8118 | {'rouge1': 0.9217618560633272, 'rouge2': 0.8611767121767122, 'rougeL': 0.9194047336106163, 'rougeLsum': 0.9196579346579348} | 12.3535 |
|
64 |
+
| 0.0367 | 10.0 | 750 | 0.5632 | 82.2896 | {'rouge1': 0.9241220549602904, 'rouge2': 0.8623059255559258, 'rougeL': 0.921636625901332, 'rougeLsum': 0.9214262796027506} | 10.8206 |
|
65 |
+
| 0.0386 | 11.0 | 825 | 0.5325 | 83.7819 | {'rouge1': 0.9264862667289138, 'rouge2': 0.8665701058201061, 'rougeL': 0.924734155278273, 'rougeLsum': 0.9247572857425799} | 10.2795 |
|
66 |
+
| 0.0377 | 12.0 | 900 | 0.5540 | 83.6969 | {'rouge1': 0.9270570480717542, 'rouge2': 0.8649807692307694, 'rougeL': 0.9248777127012422, 'rougeLsum': 0.9247459680842035} | 10.0090 |
|
67 |
+
| 0.0244 | 13.0 | 975 | 0.5462 | 83.4825 | {'rouge1': 0.9284353783471431, 'rouge2': 0.8673707311207314, 'rougeL': 0.9249773075508372, 'rougeLsum': 0.924672456084221} | 9.9188 |
|
68 |
+
| 0.0237 | 14.0 | 1050 | 0.5468 | 83.3820 | {'rouge1': 0.9267599383187618, 'rouge2': 0.8631084656084658, 'rougeL': 0.9244043657867187, 'rougeLsum': 0.9240160215601393} | 10.0992 |
|
69 |
+
| 0.0173 | 15.0 | 1125 | 0.5604 | 82.7936 | {'rouge1': 0.9260569985569987, 'rouge2': 0.8652394179894183, 'rougeL': 0.923313301078007, 'rougeLsum': 0.9233026695526696} | 10.1894 |
|
70 |
+
| 0.0193 | 16.0 | 1200 | 0.5689 | 85.1028 | {'rouge1': 0.9298936104744928, 'rouge2': 0.874325396825397, 'rougeL': 0.9280833015024192, 'rougeLsum': 0.9275536633845459} | 9.6483 |
|
71 |
+
| 0.0184 | 17.0 | 1275 | 0.5695 | 83.7781 | {'rouge1': 0.9266896553881849, 'rouge2': 0.8650757020757022, 'rougeL': 0.924688972247796, 'rougeLsum': 0.9245597692068284} | 10.2795 |
|
72 |
+
| 0.0142 | 18.0 | 1350 | 0.5655 | 83.6649 | {'rouge1': 0.925748337718926, 'rouge2': 0.8645625300625305, 'rougeL': 0.9233836055012529, 'rougeLsum': 0.9233253614577146} | 10.0090 |
|
73 |
+
| 0.0131 | 19.0 | 1425 | 0.5701 | 83.6843 | {'rouge1': 0.9268515199397553, 'rouge2': 0.8660478595478597, 'rougeL': 0.9242069248833956, 'rougeLsum': 0.9242629070276129} | 9.9188 |
|
74 |
+
| 0.0122 | 20.0 | 1500 | 0.5690 | 83.5807 | {'rouge1': 0.9265753592812418, 'rouge2': 0.8656694324194325, 'rougeL': 0.9238164847135437, 'rougeLsum': 0.9238003663003664} | 10.0090 |
|
75 |
|
76 |
|
77 |
### Framework versions
|
78 |
|
79 |
- Transformers 4.26.1
|
80 |
- Pytorch 2.4.1+cu121
|
81 |
+
- Datasets 3.0.2
|
82 |
- Tokenizers 0.13.3
|