|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- PolyAI/minds14 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-tiny-en-US |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: PolyAI/minds14 |
|
type: PolyAI/minds14 |
|
config: en-US |
|
split: train[450:] |
|
args: en-US |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.3435655253837072 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-tiny-en-US |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the PolyAI/minds14 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6286 |
|
- Wer Ortho: 0.3430 |
|
- Wer: 0.3436 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_steps: 10 |
|
- training_steps: 225 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| |
|
| 3.2798 | 0.25 | 14 | 0.9783 | 0.7218 | 0.6889 | |
|
| 0.6283 | 0.5 | 28 | 0.5667 | 0.4479 | 0.4427 | |
|
| 0.5574 | 0.75 | 42 | 0.5307 | 0.4812 | 0.4858 | |
|
| 0.501 | 1.0 | 56 | 0.5130 | 0.3800 | 0.3813 | |
|
| 0.2296 | 1.25 | 70 | 0.5057 | 0.3479 | 0.3436 | |
|
| 0.2296 | 1.5 | 84 | 0.5515 | 0.3572 | 0.3512 | |
|
| 0.2207 | 1.75 | 98 | 0.5356 | 0.3578 | 0.3530 | |
|
| 0.1928 | 2.0 | 112 | 0.5288 | 0.3226 | 0.3200 | |
|
| 0.0795 | 2.25 | 126 | 0.5532 | 0.3257 | 0.3259 | |
|
| 0.0651 | 2.5 | 140 | 0.5833 | 0.3504 | 0.3512 | |
|
| 0.0719 | 2.75 | 154 | 0.5931 | 0.3467 | 0.3501 | |
|
| 0.0722 | 3.0 | 168 | 0.5994 | 0.3498 | 0.3477 | |
|
| 0.0231 | 3.25 | 182 | 0.6030 | 0.3270 | 0.3264 | |
|
| 0.0433 | 3.5 | 196 | 0.6059 | 0.3214 | 0.3200 | |
|
| 0.0663 | 3.75 | 210 | 0.6262 | 0.3646 | 0.3648 | |
|
| 0.0396 | 4.0 | 224 | 0.6286 | 0.3430 | 0.3436 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.3 |
|
- Tokenizers 0.13.3 |
|
|