taohoang commited on
Commit
1d92d23
·
1 Parent(s): bd6cba5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: openai/whisper-tiny
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - PolyAI/minds14
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: whisper-tiny-en-US
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: PolyAI/minds14
18
+ type: PolyAI/minds14
19
+ config: en-US
20
+ split: train[450:]
21
+ args: en-US
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.3435655253837072
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # whisper-tiny-en-US
32
+
33
+ This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.6286
36
+ - Wer Ortho: 0.3430
37
+ - Wer: 0.3436
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: constant_with_warmup
62
+ - lr_scheduler_warmup_steps: 10
63
+ - training_steps: 225
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
68
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
69
+ | 3.2798 | 0.25 | 14 | 0.9783 | 0.7218 | 0.6889 |
70
+ | 0.6283 | 0.5 | 28 | 0.5667 | 0.4479 | 0.4427 |
71
+ | 0.5574 | 0.75 | 42 | 0.5307 | 0.4812 | 0.4858 |
72
+ | 0.501 | 1.0 | 56 | 0.5130 | 0.3800 | 0.3813 |
73
+ | 0.2296 | 1.25 | 70 | 0.5057 | 0.3479 | 0.3436 |
74
+ | 0.2296 | 1.5 | 84 | 0.5515 | 0.3572 | 0.3512 |
75
+ | 0.2207 | 1.75 | 98 | 0.5356 | 0.3578 | 0.3530 |
76
+ | 0.1928 | 2.0 | 112 | 0.5288 | 0.3226 | 0.3200 |
77
+ | 0.0795 | 2.25 | 126 | 0.5532 | 0.3257 | 0.3259 |
78
+ | 0.0651 | 2.5 | 140 | 0.5833 | 0.3504 | 0.3512 |
79
+ | 0.0719 | 2.75 | 154 | 0.5931 | 0.3467 | 0.3501 |
80
+ | 0.0722 | 3.0 | 168 | 0.5994 | 0.3498 | 0.3477 |
81
+ | 0.0231 | 3.25 | 182 | 0.6030 | 0.3270 | 0.3264 |
82
+ | 0.0433 | 3.5 | 196 | 0.6059 | 0.3214 | 0.3200 |
83
+ | 0.0663 | 3.75 | 210 | 0.6262 | 0.3646 | 0.3648 |
84
+ | 0.0396 | 4.0 | 224 | 0.6286 | 0.3430 | 0.3436 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.31.0
90
+ - Pytorch 2.0.1+cu118
91
+ - Datasets 2.14.3
92
+ - Tokenizers 0.13.3