whisper-tiny-en-US

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6286
  • Wer Ortho: 0.3430
  • Wer: 0.3436

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 10
  • training_steps: 225

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
3.2798 0.25 14 0.9783 0.7218 0.6889
0.6283 0.5 28 0.5667 0.4479 0.4427
0.5574 0.75 42 0.5307 0.4812 0.4858
0.501 1.0 56 0.5130 0.3800 0.3813
0.2296 1.25 70 0.5057 0.3479 0.3436
0.2296 1.5 84 0.5515 0.3572 0.3512
0.2207 1.75 98 0.5356 0.3578 0.3530
0.1928 2.0 112 0.5288 0.3226 0.3200
0.0795 2.25 126 0.5532 0.3257 0.3259
0.0651 2.5 140 0.5833 0.3504 0.3512
0.0719 2.75 154 0.5931 0.3467 0.3501
0.0722 3.0 168 0.5994 0.3498 0.3477
0.0231 3.25 182 0.6030 0.3270 0.3264
0.0433 3.5 196 0.6059 0.3214 0.3200
0.0663 3.75 210 0.6262 0.3646 0.3648
0.0396 4.0 224 0.6286 0.3430 0.3436

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for taohoang/whisper-tiny-en-US

Finetuned
(1283)
this model

Dataset used to train taohoang/whisper-tiny-en-US

Evaluation results