|
--- |
|
base_model: UWB-AIR/Czert-B-base-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cnec |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: CNEC_2_0_Czert-B-base-cased |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cnec |
|
type: cnec |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8093464273620048 |
|
- name: Recall |
|
type: recall |
|
value: 0.8547925608011445 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8314489476430683 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9446311123820418 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CNEC_2_0_Czert-B-base-cased |
|
|
|
This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co./UWB-AIR/Czert-B-base-cased) on the cnec dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3352 |
|
- Precision: 0.8093 |
|
- Recall: 0.8548 |
|
- F1: 0.8314 |
|
- Accuracy: 0.9446 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.5496 | 2.22 | 500 | 0.2782 | 0.7301 | 0.7750 | 0.7519 | 0.9275 | |
|
| 0.2133 | 4.44 | 1000 | 0.2487 | 0.7811 | 0.8219 | 0.8010 | 0.9399 | |
|
| 0.144 | 6.67 | 1500 | 0.2580 | 0.7737 | 0.8290 | 0.8004 | 0.9396 | |
|
| 0.1029 | 8.89 | 2000 | 0.2576 | 0.7997 | 0.8480 | 0.8231 | 0.9446 | |
|
| 0.0776 | 11.11 | 2500 | 0.2849 | 0.7990 | 0.8516 | 0.8244 | 0.9444 | |
|
| 0.0601 | 13.33 | 3000 | 0.2971 | 0.8021 | 0.8523 | 0.8264 | 0.9450 | |
|
| 0.0494 | 15.56 | 3500 | 0.3077 | 0.8014 | 0.8473 | 0.8237 | 0.9440 | |
|
| 0.0408 | 17.78 | 4000 | 0.3145 | 0.8131 | 0.8555 | 0.8337 | 0.9448 | |
|
| 0.0353 | 20.0 | 4500 | 0.3260 | 0.8097 | 0.8569 | 0.8327 | 0.9445 | |
|
| 0.0311 | 22.22 | 5000 | 0.3356 | 0.8076 | 0.8541 | 0.8302 | 0.9441 | |
|
| 0.0281 | 24.44 | 5500 | 0.3352 | 0.8093 | 0.8548 | 0.8314 | 0.9446 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|