--- base_model: UWB-AIR/Czert-B-base-cased tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_2_0_Czert-B-base-cased results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8093464273620048 - name: Recall type: recall value: 0.8547925608011445 - name: F1 type: f1 value: 0.8314489476430683 - name: Accuracy type: accuracy value: 0.9446311123820418 --- # CNEC_2_0_Czert-B-base-cased This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co./UWB-AIR/Czert-B-base-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.3352 - Precision: 0.8093 - Recall: 0.8548 - F1: 0.8314 - Accuracy: 0.9446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5496 | 2.22 | 500 | 0.2782 | 0.7301 | 0.7750 | 0.7519 | 0.9275 | | 0.2133 | 4.44 | 1000 | 0.2487 | 0.7811 | 0.8219 | 0.8010 | 0.9399 | | 0.144 | 6.67 | 1500 | 0.2580 | 0.7737 | 0.8290 | 0.8004 | 0.9396 | | 0.1029 | 8.89 | 2000 | 0.2576 | 0.7997 | 0.8480 | 0.8231 | 0.9446 | | 0.0776 | 11.11 | 2500 | 0.2849 | 0.7990 | 0.8516 | 0.8244 | 0.9444 | | 0.0601 | 13.33 | 3000 | 0.2971 | 0.8021 | 0.8523 | 0.8264 | 0.9450 | | 0.0494 | 15.56 | 3500 | 0.3077 | 0.8014 | 0.8473 | 0.8237 | 0.9440 | | 0.0408 | 17.78 | 4000 | 0.3145 | 0.8131 | 0.8555 | 0.8337 | 0.9448 | | 0.0353 | 20.0 | 4500 | 0.3260 | 0.8097 | 0.8569 | 0.8327 | 0.9445 | | 0.0311 | 22.22 | 5000 | 0.3356 | 0.8076 | 0.8541 | 0.8302 | 0.9441 | | 0.0281 | 24.44 | 5500 | 0.3352 | 0.8093 | 0.8548 | 0.8314 | 0.9446 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0