Model save
Browse files- README.md +20 -20
- model.safetensors +1 -1
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on the cnec dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,17 +78,17 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.8093464273620048
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.8547925608011445
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.8314489476430683
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9446311123820418
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on the cnec dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.3352
|
47 |
+
- Precision: 0.8093
|
48 |
+
- Recall: 0.8548
|
49 |
+
- F1: 0.8314
|
50 |
+
- Accuracy: 0.9446
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.5496 | 2.22 | 500 | 0.2782 | 0.7301 | 0.7750 | 0.7519 | 0.9275 |
|
82 |
+
| 0.2133 | 4.44 | 1000 | 0.2487 | 0.7811 | 0.8219 | 0.8010 | 0.9399 |
|
83 |
+
| 0.144 | 6.67 | 1500 | 0.2580 | 0.7737 | 0.8290 | 0.8004 | 0.9396 |
|
84 |
+
| 0.1029 | 8.89 | 2000 | 0.2576 | 0.7997 | 0.8480 | 0.8231 | 0.9446 |
|
85 |
+
| 0.0776 | 11.11 | 2500 | 0.2849 | 0.7990 | 0.8516 | 0.8244 | 0.9444 |
|
86 |
+
| 0.0601 | 13.33 | 3000 | 0.2971 | 0.8021 | 0.8523 | 0.8264 | 0.9450 |
|
87 |
+
| 0.0494 | 15.56 | 3500 | 0.3077 | 0.8014 | 0.8473 | 0.8237 | 0.9440 |
|
88 |
+
| 0.0408 | 17.78 | 4000 | 0.3145 | 0.8131 | 0.8555 | 0.8337 | 0.9448 |
|
89 |
+
| 0.0353 | 20.0 | 4500 | 0.3260 | 0.8097 | 0.8569 | 0.8327 | 0.9445 |
|
90 |
+
| 0.0311 | 22.22 | 5000 | 0.3356 | 0.8076 | 0.8541 | 0.8302 | 0.9441 |
|
91 |
+
| 0.0281 | 24.44 | 5500 | 0.3352 | 0.8093 | 0.8548 | 0.8314 | 0.9446 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 435876004
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c71e7f220c9ea8724585849dd9e365eb766d305c76d6de09b88ce798e031dce
|
3 |
size 435876004
|