test / layout_guidance /inference.py
silentchen's picture
Upload 13 files
09ce3f4
# !pip install diffusers["torch"] transformers
import hydra
import torch
import yaml
from diffusers import StableDiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel
import torch.nn.functional as F
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import torch.nn as nn
import time
from accelerate import Accelerator
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
from omegaconf import DictConfig, OmegaConf
from datetime import datetime
import logging
import itertools
from torch.utils.data import DataLoader
from tqdm import tqdm
from diffusers import LMSDiscreteScheduler
from diffusers.optimization import get_scheduler
from torch import autocast
from torch.cuda.amp import GradScaler
import pdb
import math
from my_model import unet_2d_condition
from typing import Iterable, Optional
import os
import json
import numpy as np
import scipy
def freeze_params(params):
for param in params:
param.requires_grad = False
def unfreeze_params(params):
for param in params:
param.requires_grad = True
class EMAModel:
"""
Exponential Moving Average of models weights
"""
def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999):
parameters = list(parameters)
print("list parameters")
self.shadow_params = [p.clone().detach() for p in parameters]
print("finish clone parameters")
self.decay = decay
self.optimization_step = 0
def get_decay(self, optimization_step):
"""
Compute the decay factor for the exponential moving average.
"""
value = (1 + optimization_step) / (10 + optimization_step)
return 1 - min(self.decay, value)
@torch.no_grad()
def step(self, parameters):
parameters = list(parameters)
self.optimization_step += 1
self.decay = self.get_decay(self.optimization_step)
for s_param, param in zip(self.shadow_params, parameters):
if param.requires_grad:
tmp = self.decay * (s_param - param)
s_param.sub_(tmp)
else:
s_param.copy_(param)
torch.cuda.empty_cache()
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
"""
Copy current averaged parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages. If `None`, the
parameters with which this `ExponentialMovingAverage` was
initialized will be used.
"""
parameters = list(parameters)
for s_param, param in zip(self.shadow_params, parameters):
param.data.copy_(s_param.data)
def to(self, device=None, dtype=None) -> None:
r"""c"""
# .to() on the tensors handles None correctly
self.shadow_params = [
p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
for p in self.shadow_params
]
def compute_visor_loss(attn_maps_mid, attn_maps_up, obj_a_positions, obj_b_positions, relationship):
loss = 0
for attn_map_integrated in attn_maps_mid:
attn_map = attn_map_integrated.chunk(2)[1]
#
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
weight_matrix_x = torch.zeros(size=(H, W)).cuda()
weight_matrix_y = torch.zeros(size=(H, W)).cuda()
for x_indx in range(W):
weight_matrix_x[:, x_indx] = x_indx
for y_indx in range(H):
weight_matrix_y[y_indx, :] = y_indx
# for obj_idx in range(object_number):
#
# bbox = bboxes[obj_idx]
obj_a_avg_x_total = 0
obj_a_avg_y_total = 0
for obj_a_position in obj_a_positions:
ca_map_obj = attn_map[:, :, obj_a_position].reshape(b, H, W)
# pdb.set_trace()
obj_a_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
obj_a_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
obj_a_avg_x_total += obj_a_avg_x
obj_a_avg_y_total += obj_a_avg_y
obj_a_avg_x_total = (obj_a_avg_x_total/len(obj_a_positions)).mean() / W
obj_a_avg_y_total = (obj_a_avg_y_total/len(obj_a_positions)).mean() / H
print('mid: obj_a_avg_x_total', obj_a_avg_x_total)
obj_b_avg_x_total = 0
obj_b_avg_y_total = 0
for obj_b_position in obj_b_positions:
ca_map_obj = attn_map[:, :, obj_b_position].reshape(b, H, W)
obj_b_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
obj_b_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
obj_b_avg_x_total += obj_b_avg_x
obj_b_avg_y_total += obj_b_avg_y
obj_b_avg_x_total = (obj_b_avg_x_total/len(obj_b_positions)).mean() / W
obj_b_avg_y_total = (obj_b_avg_y_total/len(obj_b_positions)).mean() / H
print('mid: obj_b_avg_x_total', obj_b_avg_x_total)
if relationship == 0:
loss += (obj_b_avg_x_total - obj_a_avg_x_total)
elif relationship == 1:
loss += (obj_a_avg_x_total - obj_b_avg_x_total)
elif relationship == 2:
loss += (obj_b_avg_y_total - obj_a_avg_y_total)
elif relationship == 3:
loss += (obj_a_avg_y_total - obj_b_avg_y_total)
for attn_map_integrated in attn_maps_up[0]:
attn_map = attn_map_integrated.chunk(2)[1]
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
weight_matrix_x = torch.zeros(size=(H, W)).cuda()
weight_matrix_y = torch.zeros(size=(H, W)).cuda()
for x_indx in range(W):
weight_matrix_x[:, x_indx] = x_indx
for y_indx in range(H):
weight_matrix_y[y_indx, :] = y_indx
# for obj_idx in range(object_number):
#
# bbox = bboxes[obj_idx]
obj_a_avg_x_total = 0
obj_a_avg_y_total = 0
for obj_a_position in obj_a_positions:
ca_map_obj = attn_map[:, :, obj_a_position].reshape(b, H, W)
obj_a_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
obj_a_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
obj_a_avg_x_total += obj_a_avg_x
obj_a_avg_y_total += obj_a_avg_y
obj_a_avg_x_total = (obj_a_avg_x_total / len(obj_a_positions)).mean() / W
obj_a_avg_y_total = (obj_a_avg_y_total / len(obj_a_positions)).mean() / H
print('up: obj_a_avg_x_total', obj_a_avg_x_total)
obj_b_avg_x_total = 0
obj_b_avg_y_total = 0
for obj_b_position in obj_b_positions:
ca_map_obj = attn_map[:, :, obj_b_position].reshape(b, H, W)
obj_b_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
obj_b_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
obj_b_avg_x_total += obj_b_avg_x
obj_b_avg_y_total += obj_b_avg_y
obj_b_avg_x_total = (obj_b_avg_x_total / len(obj_b_positions)).mean() / W
obj_b_avg_y_total = (obj_b_avg_y_total / len(obj_b_positions)).mean() / H
print('up: obj_b_avg_x_total', obj_b_avg_x_total)
if relationship == 0:
loss += (obj_a_avg_x_total - obj_b_avg_x_total)
elif relationship == 1:
loss += (obj_b_avg_x_total - obj_a_avg_x_total)
elif relationship == 2:
loss += (obj_a_avg_y_total - obj_b_avg_y_total)
elif relationship == 3:
loss += (obj_b_avg_y_total - obj_a_avg_y_total)
loss = loss / (len(attn_maps_up[0]) + len(attn_maps_mid))
return loss
@hydra.main(version_base=None, config_path="conf", config_name="config_visor_box")
def train(cfg: DictConfig):
# fix the randomness of torch
print(cfg)
with open('./conf/unet/origin_config.json') as f:
unet_config = json.load(f)
unet = unet_2d_condition.UNet2DConditionModel(**unet_config)
# ckp = torch.load('/Users/shil5883/Downloads/diffusion_pytorch_model.bin', map_location='cpu')
# prev_attn_map = torch.load('./attn_map.ckp', map_location='cpu')
ckp = torch.load('/work/minghao/chess_gen/diffusion_pytorch_model.bin', map_location='cpu')
prev_attn_map = torch.load('/work/minghao/chess_gen/visual_attn/2023-02-02/15-05-51/epoch_100_sche_constant_lr_1e-06_ac_1/attn_map.ckp', map_location='cpu')
# prev_attn_map = torch.load('/work/minghao/chess_gen/visual_attn/2023-01-16/18-58-12/epoch_100_sche_constant_lr_1e-06_ac_1/attn_map.ckp', map_location='cpu')
unet.load_state_dict(ckp)
unet_original = UNet2DConditionModel(**unet_config)
unet_original.load_state_dict(ckp)
date_now, time_now = datetime.now().strftime("%Y-%m-%d,%H-%M-%S").split(',')
# cfg.general.save_path = os.path.join(cfg.general.save_path, date_now, time_now)
# if not os.path.exists(cfg.general.save_path ):
# os.makedirs(cfg.general.save_path)
# cfg.general.save_path
mixed_precision = 'fp16' if torch.cuda.is_available() else 'no'
accelerator = Accelerator(
gradient_accumulation_steps=cfg.training.accumulate_step,
mixed_precision=mixed_precision,
log_with="tensorboard",
logging_dir='./',
)
# initialize dataset and dataloader
if accelerator.is_main_process:
print("Loading the dataset!!!!!")
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
# train_dataset = ICLEVERDataset(cfg.data.data_path, tokenizer, cfg, prefix='train')
# val_dataset = ICLEVERDataset(cfg.data.data_path, tokenizer, cfg, prefix='val')
# train_loader = DataLoader(train_dataset, batch_size=cfg.training.batch_size, shuffle=True, num_workers=2, pin_memory=False)
# val_loader = DataLoader(val_dataset, batch_size=cfg.training.batch_size * 2, shuffle=True, num_workers=2, pin_memory=False)
if accelerator.is_main_process:
print("Complete loading the dataset!!!!!")
if accelerator.is_main_process:
print("Complete load the noise scheduler!!!!!")
with open("config.yaml", "w") as f:
OmegaConf.save(cfg, f)
if not os.path.exists(cfg.general.save_path) and accelerator.is_main_process:
os.makedirs(cfg.general.save_path)
if accelerator.is_main_process:
print("saved load the noise scheduler!!!!!")
# Move unet to device
device = "cuda" if torch.cuda.is_available() else "cpu"
# load pretrained models and schedular
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
# boards_embedder.to(device)
if accelerator.is_main_process:
print("move the model to device!!!!!")
# Keep vae and unet in eval model as we don't train these
# Initialize the optimizer
cfg.training.lr = (
cfg.training.lr * cfg.training.accumulate_step * cfg.training.batch_size * accelerator.num_processes
)
# Move vae and unet to device
vae.to(device)
unet.to(device)
text_encoder.to(device)
# prev_attn_map.to(device)
unet_original.to(device)
vae.eval()
unet.eval()
text_encoder.eval()
unet_original.eval()
# tokenizer.to(device)
# if accelerator.is_main_process:
print("prepare the accelerator module at process: {}!!!!!".format(accelerator.process_index))
# unet = accelerator.prepare(unet)
print("done the accelerator module at process: {}!!!!!".format(accelerator.process_index))
# Create EMA for the unet.
# if cfg.training.use_ema:
# ema_unet = EMAModel(unet.parameters())
# ema_encoder = EMAModel(boards_embedder.parameters())
ema_unet = None
# print(start_ema)
if cfg.training.use_ema:
if accelerator.is_main_process:
print("Using the EMA model!!!!!")
print("start EMA at process: {}!!!!!".format(accelerator.process_index))
ema_unet = EMAModel(unet.parameters())
# ema_encoder = EMAModel(boards_embedder.parameters())
# prompt = 'A traffic light below a sink'
templates = ['{} to the left of {}', '{} to the right of {}', '{} above {}', '{} below {}']
bboxes_template = [[0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 1.0, 0.5], [0.5, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0]]
bboxes_template_list = [[0, 2], [2, 0], [1, 3], [3, 1]]
iteration_start = cfg.inference.start_pair
iteration_now = iteration_start
iteration_interval = cfg.inference.iteration_interval
with open('./coco_paris.txt', 'r') as f:
image_pairs = f.readlines()
for image_pair in tqdm(image_pairs[iteration_start: iteration_start + iteration_interval]):
obj_a, obj_b = image_pair.strip().split(',')[0], image_pair.strip().split(',')[1]
obj_a = 'A {}'.format(obj_a) if obj_a[0] not in ['a', 'e', 'i', 'o', 'u'] else 'An {}'.format(obj_a)
obj_b = 'a {}'.format(obj_b) if obj_b[0] not in ['a', 'e', 'i', 'o', 'u'] else 'an {}'.format(obj_b)
for idx, template in enumerate(templates):
prompt = template.format(obj_a, obj_b)
obj_a_len = len(obj_a.split(' ')) - 1
obj_a_position = [2] if obj_a_len == 1 else [2, 3]
obj_b_position = [obj_a_len + 1 + len(template.split(' ')) + i for i in range(len(obj_b.split(' '))-1)]
obj_positions = [obj_a_position, obj_b_position]
obj_a_boxes = [bboxes_template[bboxes_template_list[idx][0]].copy() for _ in range(len(obj_a.split(' ')) - 1)]
obj_b_boxes = [bboxes_template[bboxes_template_list[idx][1]].copy() for _ in range(len(obj_b.split(' ')) - 1)]
obj_boxes = [obj_a_boxes, obj_b_boxes]
print(prompt, obj_positions, obj_boxes)
# for infer_iter in range(1):
inference(device, unet, unet_original, vae, tokenizer, text_encoder, prompt, cfg, prev_attn_map, bboxes=obj_boxes, object_positions=obj_positions, infer_iter=cfg.inference.infer_iter, pair_id=iteration_now)
obj_b, obj_a = image_pair.strip().split(',')[0], image_pair.strip().split(',')[1]
obj_a = 'A {}'.format(obj_a) if obj_a[0] not in ['a', 'e', 'i', 'o', 'u'] else 'An {}'.format(obj_a)
obj_b = 'a {}'.format(obj_b) if obj_b[0] not in ['a', 'e', 'i', 'o', 'u'] else 'an {}'.format(obj_b)
for idx, template in enumerate(templates):
prompt = template.format(obj_a, obj_b)
obj_a_len = len(obj_a.split(' ')) - 1
obj_a_position = [2] if obj_a_len == 1 else [2, 3]
obj_b_position = [obj_a_len + 1 + len(template.split(' ')) + i for i in range(len(obj_b.split(' '))-1)]
obj_positions = [obj_a_position, obj_b_position]
obj_a_boxes = [bboxes_template[bboxes_template_list[idx][0]].copy() for _ in range(len(obj_a.split(' ')) - 1)]
obj_b_boxes = [bboxes_template[bboxes_template_list[idx][1]].copy() for _ in range(len(obj_b.split(' ')) - 1)]
obj_boxes = [obj_a_boxes, obj_b_boxes]
print(prompt, obj_positions, obj_boxes)
inference(device, unet, unet_original, vae, tokenizer, text_encoder, prompt, cfg, prev_attn_map, bboxes=obj_boxes, object_positions=obj_positions, infer_iter=cfg.inference.infer_iter, pair_id=iteration_now)
iteration_now += 1
def compute_ca_loss(attn_maps_mid, attn_maps_up, bboxes, object_positions):
loss = 0
object_number = len(bboxes)
if object_number == 0:
return torch.tensor(0).float().cuda()
for attn_map_integrated in attn_maps_mid:
attn_map = attn_map_integrated.chunk(2)[1]
#
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# pdb.set_trace()
for obj_idx in range(object_number):
obj_loss = 0
mask = torch.zeros(size=(H, W)).cuda()
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1
for obj_position in object_positions[obj_idx]:
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
# ca_map_obj = attn_map[:, :, object_positions[obj_position]].reshape(b, H, W)
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1)/ca_map_obj.reshape(b, -1).sum(dim=-1)
obj_loss += torch.mean((1 - activation_value) ** 2)
loss += (obj_loss/len(object_positions[obj_idx]))
# print("??", obj_idx, obj_loss/len(object_positions[obj_idx]))
# compute loss on padding tokens
# activation_value = torch.zeros(size=(b, )).cuda()
# for obj_idx in range(object_number):
# bbox = bboxes[obj_idx]
# ca_map_obj = attn_map[:, :, padding_start:].reshape(b, H, W, -1)
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
#
# loss += torch.mean((1 - activation_value) ** 2)
for attn_map_integrated in attn_maps_up[0]:
attn_map = attn_map_integrated.chunk(2)[1]
#
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
for obj_idx in range(object_number):
obj_loss = 0
mask = torch.zeros(size=(H, W)).cuda()
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1
for obj_position in object_positions[obj_idx]:
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
# ca_map_obj = attn_map[:, :, object_positions[obj_position]].reshape(b, H, W)
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(
dim=-1)
obj_loss += torch.mean((1 - activation_value) ** 2)
loss += (obj_loss / len(object_positions[obj_idx]))
# compute loss on padding tokens
# activation_value = torch.zeros(size=(b, )).cuda()
# for obj_idx in range(object_number):
# bbox = bboxes[obj_idx]
# ca_map_obj = attn_map[:, :,padding_start:].reshape(b, H, W, -1)
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
#
# loss += torch.mean((1 - activation_value) ** 2)
loss = loss / (object_number * (len(attn_maps_up[0]) + len(attn_maps_mid)))
return loss
def plt_all_attn_map_in_one(attn_map_integrated_list_down, attn_map_integrated_list_mid, attn_map_integrated_list_up, image, prompt, cfg, t, prefix='all'):
prompt_split = prompt.split(' ')
prompt_len = len(prompt_split) + 4
total_layers = len(attn_map_integrated_list_down) + len(attn_map_integrated_list_mid) + len(attn_map_integrated_list_up)
fig, axs = plt.subplots(nrows=total_layers+1, ncols=prompt_len, figsize=(4 * prompt_len, 4 * total_layers))
fig.suptitle(prompt, fontsize=32)
fig.tight_layout()
cnt = 1
ax = axs[0][0]
ax.imshow(image)
for prompt_idx in range(prompt_len):
ax = axs[0][prompt_idx]
ax.set_axis_off()
for layer, attn_map_integrated in enumerate(attn_map_integrated_list_down):
attn_map_uncond, attn_map = attn_map_integrated.chunk(2)
grid_size = int(math.sqrt(attn_map.shape[1]))
for prompt_idx in range(prompt_len):
ax = axs[cnt][prompt_idx]
if prompt_idx == 0:
ax.set_ylabel('down {}'.format(layer), rotation=0, size='large')
mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy()
im = ax.imshow(mask, cmap='YlGn')
ax.set_axis_off()
cnt += 1
for layer, attn_map_integrated in enumerate(attn_map_integrated_list_mid):
attn_map_uncond, attn_map = attn_map_integrated.chunk(2)
grid_size = int(math.sqrt(attn_map.shape[1]))
for prompt_idx in range(prompt_len):
ax = axs[cnt][prompt_idx]
if prompt_idx ==0:
ax.set_ylabel('mid {}'.format(layer), rotation=0, size='large')
mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy()
im = ax.imshow(mask, cmap='YlGn')
ax.set_axis_off()
cnt += 1
for layer, attn_map_integrated in enumerate(attn_map_integrated_list_up):
attn_map_uncond, attn_map = attn_map_integrated.chunk(2)
grid_size = int(math.sqrt(attn_map.shape[1]))
for prompt_idx in range(prompt_len):
ax = axs[cnt][prompt_idx]
if prompt_idx ==0:
ax.set_ylabel('up {}'.format(layer), rotation=0, size='large')
mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy()
im = ax.imshow(mask, cmap='YlGn')
ax.set_axis_off()
cnt += 1
if not os.path.exists(cfg.general.save_path + "/{}".format(prefix)):
os.makedirs(cfg.general.save_path + "/{}".format(prefix))
plt.savefig(cfg.general.save_path + "/{}/step_{}.png".format(prefix, str(int(t)).zfill(4)))
# generate_video()
plt.close()
if __name__=="__main__":
train()