Spaces:
Paused
Paused
silentchen
commited on
Commit
·
09ce3f4
1
Parent(s):
3ab28ab
Upload 13 files
Browse files- app.py +243 -222
- conf/net_conf.yaml +35 -0
- conf/unet/config.json +36 -0
- images/.DS_Store +0 -0
- layout_guidance/__init__.py +0 -0
- layout_guidance/inference.py +488 -0
- my_model/__init__.py +0 -0
- my_model/attention.py +929 -0
- my_model/unet_2d_blocks.py +1612 -0
- my_model/unet_2d_condition.py +389 -0
- utils.py +76 -0
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from omegaconf import OmegaConf
|
4 |
-
# from
|
5 |
-
|
|
|
|
|
6 |
import json
|
7 |
import numpy as np
|
8 |
from PIL import Image, ImageDraw, ImageFont
|
@@ -10,7 +12,7 @@ from functools import partial
|
|
10 |
from collections import Counter
|
11 |
import math
|
12 |
import gc
|
13 |
-
|
14 |
from gradio import processing_utils
|
15 |
from typing import Optional
|
16 |
|
@@ -184,77 +186,6 @@ class Blocks(gr.Blocks):
|
|
184 |
'''
|
185 |
inference model
|
186 |
'''
|
187 |
-
|
188 |
-
|
189 |
-
@torch.no_grad()
|
190 |
-
def inference(task, language_instruction, grounding_instruction, inpainting_boxes_nodrop, image,
|
191 |
-
alpha_sample, guidance_scale, batch_size,
|
192 |
-
fix_seed, rand_seed, actual_mask, style_image,
|
193 |
-
*args, **kwargs):
|
194 |
-
grounding_instruction = json.loads(grounding_instruction)
|
195 |
-
phrase_list, location_list = [], []
|
196 |
-
for k, v in grounding_instruction.items():
|
197 |
-
phrase_list.append(k)
|
198 |
-
location_list.append(v)
|
199 |
-
|
200 |
-
placeholder_image = Image.open('images/teddy.jpg').convert("RGB")
|
201 |
-
image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled
|
202 |
-
|
203 |
-
batch_size = int(batch_size)
|
204 |
-
if not 1 <= batch_size <= 4:
|
205 |
-
batch_size = 2
|
206 |
-
|
207 |
-
if style_image == None:
|
208 |
-
has_text_mask = 1
|
209 |
-
has_image_mask = 0 # then we hack above 'image_list'
|
210 |
-
else:
|
211 |
-
valid_phrase_len = len(phrase_list)
|
212 |
-
|
213 |
-
phrase_list += ['placeholder']
|
214 |
-
has_text_mask = [1] * valid_phrase_len + [0]
|
215 |
-
|
216 |
-
image_list = [placeholder_image] * valid_phrase_len + [style_image]
|
217 |
-
has_image_mask = [0] * valid_phrase_len + [1]
|
218 |
-
|
219 |
-
location_list += [[0.0, 0.0, 1, 0.01]] # style image grounding location
|
220 |
-
|
221 |
-
if task == 'Grounded Inpainting':
|
222 |
-
alpha_sample = 1.0
|
223 |
-
|
224 |
-
instruction = dict(
|
225 |
-
prompt=language_instruction,
|
226 |
-
phrases=phrase_list,
|
227 |
-
images=image_list,
|
228 |
-
locations=location_list,
|
229 |
-
alpha_type=[alpha_sample, 0, 1.0 - alpha_sample],
|
230 |
-
has_text_mask=has_text_mask,
|
231 |
-
has_image_mask=has_image_mask,
|
232 |
-
save_folder_name=language_instruction,
|
233 |
-
guidance_scale=guidance_scale,
|
234 |
-
batch_size=batch_size,
|
235 |
-
fix_seed=bool(fix_seed),
|
236 |
-
rand_seed=int(rand_seed),
|
237 |
-
actual_mask=actual_mask,
|
238 |
-
inpainting_boxes_nodrop=inpainting_boxes_nodrop,
|
239 |
-
)
|
240 |
-
|
241 |
-
get_model = partial(instance.get_model,
|
242 |
-
batch_size=batch_size,
|
243 |
-
instruction=language_instruction,
|
244 |
-
phrase_list=phrase_list)
|
245 |
-
|
246 |
-
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
247 |
-
if task == 'Grounded Generation':
|
248 |
-
if style_image == None:
|
249 |
-
return grounded_generation_box(get_model('base'), instruction, *args, **kwargs)
|
250 |
-
else:
|
251 |
-
return grounded_generation_box(get_model('style'), instruction, *args, **kwargs)
|
252 |
-
elif task == 'Grounded Inpainting':
|
253 |
-
assert image is not None
|
254 |
-
instruction['input_image'] = image.convert("RGB")
|
255 |
-
return grounded_generation_box(get_model('inpaint'), instruction, *args, **kwargs)
|
256 |
-
|
257 |
-
|
258 |
def draw_box(boxes=[], texts=[], img=None):
|
259 |
if len(boxes) == 0 and img is None:
|
260 |
return None
|
@@ -275,6 +206,106 @@ def draw_box(boxes=[], texts=[], img=None):
|
|
275 |
fill=(255, 255, 255))
|
276 |
return img
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
def get_concat(ims):
|
280 |
if len(ims) == 1:
|
@@ -297,13 +328,11 @@ def auto_append_grounding(language_instruction, grounding_texts):
|
|
297 |
return language_instruction
|
298 |
|
299 |
|
300 |
-
def generate(
|
301 |
-
|
302 |
-
fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image,
|
303 |
state):
|
304 |
if 'boxes' not in state:
|
305 |
state['boxes'] = []
|
306 |
-
|
307 |
boxes = state['boxes']
|
308 |
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
|
309 |
# assert len(boxes) == len(grounding_texts)
|
@@ -315,44 +344,19 @@ Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(groun
|
|
315 |
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
|
316 |
|
317 |
boxes = (np.asarray(boxes) / 512).tolist()
|
|
|
318 |
grounding_instruction = json.dumps({obj: box for obj, box in zip(grounding_texts, boxes)})
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
actual_mask = actual_mask[..., 0]
|
331 |
-
actual_mask = center_crop(actual_mask, tgt_size=(64, 64))
|
332 |
-
actual_mask = torch.from_numpy(actual_mask == 0).float()
|
333 |
-
|
334 |
-
if state.get('inpaint_hw', None):
|
335 |
-
boxes = np.asarray(boxes) * 0.9 + 0.05
|
336 |
-
boxes = boxes.tolist()
|
337 |
-
grounding_instruction = json.dumps({obj: box for obj, box in zip(grounding_texts, boxes) if obj != 'auto'})
|
338 |
-
|
339 |
-
if append_grounding:
|
340 |
-
language_instruction = auto_append_grounding(language_instruction, grounding_texts)
|
341 |
-
|
342 |
-
gen_images, gen_overlays = inference(
|
343 |
-
task, language_instruction, grounding_instruction, boxes, image,
|
344 |
-
alpha_sample, guidance_scale, batch_size,
|
345 |
-
fix_seed, rand_seed, actual_mask, style_cond_image, clip_model=clip_model,
|
346 |
-
)
|
347 |
-
|
348 |
-
for idx, gen_image in enumerate(gen_images):
|
349 |
-
|
350 |
-
if task == 'Grounded Inpainting' and state.get('inpaint_hw', None):
|
351 |
-
hw = min(*state['original_image'].shape[:2])
|
352 |
-
gen_image = sized_center_fill(state['original_image'].copy(), np.array(gen_image.resize((hw, hw))), hw, hw)
|
353 |
-
gen_image = Image.fromarray(gen_image)
|
354 |
-
|
355 |
-
gen_images[idx] = gen_image
|
356 |
|
357 |
blank_samples = batch_size % 2 if batch_size > 1 else 0
|
358 |
gen_images = [gr.Image.update(value=x, visible=True) for i, x in enumerate(gen_images)] \
|
@@ -401,35 +405,18 @@ def center_crop(img, HW=None, tgt_size=(512, 512)):
|
|
401 |
return np.array(img)
|
402 |
|
403 |
|
404 |
-
def draw(
|
|
|
405 |
if type(input) == dict:
|
406 |
image = input['image']
|
407 |
mask = input['mask']
|
408 |
else:
|
409 |
mask = input
|
410 |
-
|
411 |
if mask.ndim == 3:
|
412 |
mask = mask[..., 0]
|
413 |
|
414 |
image_scale = 1.0
|
415 |
|
416 |
-
# resize trigger
|
417 |
-
if task == "Grounded Inpainting":
|
418 |
-
mask_cond = mask.sum() == 0
|
419 |
-
# size_cond = mask.shape != (512, 512)
|
420 |
-
if mask_cond and 'original_image' not in state:
|
421 |
-
image = Image.fromarray(image)
|
422 |
-
width, height = image.size
|
423 |
-
scale = 600 / min(width, height)
|
424 |
-
image = image.resize((int(width * scale), int(height * scale)))
|
425 |
-
state['original_image'] = np.array(image).copy()
|
426 |
-
image_scale = float(height / width)
|
427 |
-
return [None, new_image_trigger + 1, image_scale, state]
|
428 |
-
else:
|
429 |
-
original_image = state['original_image']
|
430 |
-
H, W = original_image.shape[:2]
|
431 |
-
image_scale = float(H / W)
|
432 |
-
|
433 |
mask = binarize(mask)
|
434 |
if mask.shape != (512, 512):
|
435 |
# assert False, "should not receive any non- 512x512 masks."
|
@@ -444,13 +431,10 @@ def draw(task, input, grounding_texts, new_image_trigger, state):
|
|
444 |
if type(mask) != np.ndarray:
|
445 |
mask = np.array(mask)
|
446 |
|
447 |
-
if mask.sum() == 0
|
448 |
state = {}
|
449 |
|
450 |
-
|
451 |
-
image = None
|
452 |
-
else:
|
453 |
-
image = Image.fromarray(image)
|
454 |
|
455 |
if 'boxes' not in state:
|
456 |
state['boxes'] = []
|
@@ -488,7 +472,6 @@ def draw(task, input, grounding_texts, new_image_trigger, state):
|
|
488 |
box_image_resize = np.array(box_image.resize((inpaint_hw, inpaint_hw)))
|
489 |
original_image = state['original_image'].copy()
|
490 |
box_image = sized_center_fill(original_image, box_image_resize, inpaint_hw, inpaint_hw)
|
491 |
-
print(box_image, new_image_trigger, image_scale, state)
|
492 |
return [box_image, new_image_trigger, image_scale, state]
|
493 |
|
494 |
|
@@ -518,6 +501,37 @@ css = """
|
|
518 |
cursor: pointer;
|
519 |
text-decoration: none;
|
520 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
"""
|
522 |
|
523 |
rescale_js = """
|
@@ -536,71 +550,84 @@ function(x) {
|
|
536 |
with Blocks(
|
537 |
css=css,
|
538 |
analytics_enabled=False,
|
539 |
-
title="
|
540 |
) as main:
|
541 |
description = """<p style="text-align: center; font-weight: bold;">
|
542 |
<span style="font-size: 28px">Layout Guidance</span>
|
543 |
<br>
|
544 |
<span style="font-size: 18px" id="paper-info">
|
545 |
-
[<a href="
|
546 |
-
[<a href="
|
547 |
-
[<a href="
|
548 |
-
[<a href="https://huggingface.co/spaces/gligen/demo_legacy" target="_blank">Mirror</a>]
|
549 |
</span>
|
550 |
</p>
|
551 |
"""
|
552 |
gr.HTML(description)
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
)
|
571 |
-
|
572 |
-
|
573 |
-
)
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
|
605 |
state = gr.State({})
|
606 |
|
@@ -658,28 +685,22 @@ with Blocks(
|
|
658 |
queue=False)
|
659 |
sketch_pad.edit(
|
660 |
draw,
|
661 |
-
inputs=[sketch_pad,
|
662 |
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
|
663 |
queue=False,
|
664 |
)
|
665 |
grounding_instruction.change(
|
666 |
draw,
|
667 |
-
inputs=[sketch_pad,
|
668 |
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
|
669 |
queue=False,
|
670 |
)
|
671 |
clear_btn.click(
|
672 |
clear,
|
673 |
inputs=[sketch_pad_trigger, sketch_pad_trigger, batch_size, state],
|
674 |
-
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1,
|
675 |
-
out_gen_4, state],
|
676 |
queue=False)
|
677 |
-
|
678 |
-
# partial(clear, switch_task=True),
|
679 |
-
# inputs=[task, sketch_pad_trigger, batch_size, state],
|
680 |
-
# outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3,
|
681 |
-
# out_gen_4, state],
|
682 |
-
# queue=False)
|
683 |
sketch_pad_trigger.change(
|
684 |
controller.init_white,
|
685 |
inputs=[init_white_trigger],
|
@@ -690,29 +711,28 @@ with Blocks(
|
|
690 |
inputs=[state],
|
691 |
outputs=[sketch_pad, state],
|
692 |
queue=False)
|
693 |
-
batch_size.change(
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
|
699 |
-
batch_size.change(
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
|
705 |
gen_btn.click(
|
706 |
generate,
|
707 |
inputs=[
|
708 |
-
language_instruction,
|
709 |
-
loss_threshold, guidance_scale, batch_size,
|
710 |
-
fix_seed, rand_seed,
|
711 |
max_step,
|
712 |
Loss_scale, max_iter,
|
713 |
state,
|
714 |
],
|
715 |
-
outputs=[out_gen_1,
|
716 |
queue=True
|
717 |
)
|
718 |
sketch_pad_resize_trigger.change(
|
@@ -732,13 +752,13 @@ with Blocks(
|
|
732 |
gr.Examples(
|
733 |
examples=[
|
734 |
[
|
735 |
-
"images/input.png",
|
736 |
"A hello kitty toy is playing with a purple ball.",
|
737 |
"hello kitty;ball",
|
738 |
"images/hello_kitty_results.png"
|
739 |
],
|
740 |
],
|
741 |
-
inputs=[
|
742 |
outputs=None,
|
743 |
fn=None,
|
744 |
cache_examples=False,
|
@@ -746,3 +766,4 @@ with Blocks(
|
|
746 |
|
747 |
main.queue(concurrency_count=1, api_open=False)
|
748 |
main.launch(share=False, show_api=False, show_error=True)
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from omegaconf import OmegaConf
|
4 |
+
# from layout_guidance.inference import inference
|
5 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
6 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler
|
7 |
+
from my_model import unet_2d_condition
|
8 |
import json
|
9 |
import numpy as np
|
10 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
12 |
from collections import Counter
|
13 |
import math
|
14 |
import gc
|
15 |
+
from utils import compute_ca_loss
|
16 |
from gradio import processing_utils
|
17 |
from typing import Optional
|
18 |
|
|
|
186 |
'''
|
187 |
inference model
|
188 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
def draw_box(boxes=[], texts=[], img=None):
|
190 |
if len(boxes) == 0 and img is None:
|
191 |
return None
|
|
|
206 |
fill=(255, 255, 255))
|
207 |
return img
|
208 |
|
209 |
+
with open('./conf/unet/config.json') as f:
|
210 |
+
unet_config = json.load(f)
|
211 |
+
|
212 |
+
unet = unet_2d_condition.UNet2DConditionModel(**unet_config).from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="unet")
|
213 |
+
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
|
214 |
+
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
|
215 |
+
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
|
216 |
+
attn_map = None
|
217 |
+
cfg = OmegaConf.load('./conf/net_conf.yaml')
|
218 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
219 |
+
unet.to(device)
|
220 |
+
text_encoder.to(device)
|
221 |
+
vae.to(device)
|
222 |
+
def inference(device, unet, vae, tokenizer, text_encoder, prompt, cfg,attn_map, bboxes, object_positions, batch_size, loss_scale, loss_threshold, max_iter, max_index_step, rand_seed, guidance_scale):
|
223 |
+
uncond_input = tokenizer(
|
224 |
+
[""] * 1, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
|
225 |
+
)
|
226 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
|
227 |
+
|
228 |
+
input_ids = tokenizer(
|
229 |
+
prompt,
|
230 |
+
padding="max_length",
|
231 |
+
truncation=True,
|
232 |
+
max_length=tokenizer.model_max_length,
|
233 |
+
return_tensors="pt",
|
234 |
+
).input_ids[0].unsqueeze(0).to(device)
|
235 |
+
# text_embeddings = text_encoder(input_ids)[0]
|
236 |
+
text_embeddings = torch.cat([uncond_embeddings, text_encoder(input_ids)[0]])
|
237 |
+
# text_embeddings[1, 1, :] = text_embeddings[1, 2, :]
|
238 |
+
generator = torch.manual_seed(rand_seed) # Seed generator to create the inital latent noise
|
239 |
+
|
240 |
+
latents = torch.randn(
|
241 |
+
(batch_size, 4, 64, 64),
|
242 |
+
generator=generator,
|
243 |
+
).to(device)
|
244 |
+
|
245 |
+
noise_scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
246 |
+
|
247 |
+
# generator = torch.Generator("cuda").manual_seed(1024)
|
248 |
+
noise_scheduler.set_timesteps(51)
|
249 |
+
|
250 |
+
latents = latents * noise_scheduler.init_noise_sigma
|
251 |
+
|
252 |
+
loss = torch.tensor(10000)
|
253 |
+
|
254 |
+
for index, t in enumerate(noise_scheduler.timesteps):
|
255 |
+
iteration = 0
|
256 |
+
|
257 |
+
while loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < max_index_step:
|
258 |
+
latents = latents.requires_grad_(True)
|
259 |
+
|
260 |
+
# latent_model_input = torch.cat([latents] * 2)
|
261 |
+
latent_model_input = latents
|
262 |
+
|
263 |
+
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t)
|
264 |
+
noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down, _, _, _ = \
|
265 |
+
unet(latent_model_input, t, index, encoder_hidden_states=text_encoder(input_ids)[0], attn_map=attn_map,
|
266 |
+
cfg=cfg)
|
267 |
+
|
268 |
+
# update latents with guidence from gaussian blob
|
269 |
+
|
270 |
+
loss = compute_ca_loss(attn_map_integrated_mid, attn_map_integrated_up, bboxes=bboxes,
|
271 |
+
object_positions=object_positions) * loss_scale
|
272 |
+
|
273 |
+
print(loss.item() / loss_scale)
|
274 |
+
|
275 |
+
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0]
|
276 |
+
|
277 |
+
latents = latents - grad_cond * noise_scheduler.sigmas[index] ** 2
|
278 |
+
iteration += 1
|
279 |
+
torch.cuda.empty_cache()
|
280 |
+
torch.cuda.empty_cache()
|
281 |
+
|
282 |
+
|
283 |
+
with torch.no_grad():
|
284 |
+
|
285 |
+
latent_model_input = torch.cat([latents] * 2)
|
286 |
+
|
287 |
+
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t)
|
288 |
+
noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down, _, _, _ = \
|
289 |
+
unet(latent_model_input, t, index, encoder_hidden_states=text_embeddings, attn_map=attn_map, cfg=cfg)
|
290 |
+
|
291 |
+
noise_pred = noise_pred.sample
|
292 |
+
|
293 |
+
# perform guidance
|
294 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
295 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
296 |
+
|
297 |
+
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
298 |
+
torch.cuda.empty_cache()
|
299 |
+
|
300 |
+
with torch.no_grad():
|
301 |
+
print("decode image")
|
302 |
+
latents = 1 / 0.18215 * latents
|
303 |
+
image = vae.decode(latents).sample
|
304 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
305 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
306 |
+
images = (image * 255).round().astype("uint8")
|
307 |
+
pil_images = [Image.fromarray(image) for image in images]
|
308 |
+
return pil_images
|
309 |
|
310 |
def get_concat(ims):
|
311 |
if len(ims) == 1:
|
|
|
328 |
return language_instruction
|
329 |
|
330 |
|
331 |
+
def generate(language_instruction, grounding_texts, sketch_pad,
|
332 |
+
loss_threshold, guidance_scale, batch_size, rand_seed, max_step, loss_scale, max_iter,
|
|
|
333 |
state):
|
334 |
if 'boxes' not in state:
|
335 |
state['boxes'] = []
|
|
|
336 |
boxes = state['boxes']
|
337 |
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
|
338 |
# assert len(boxes) == len(grounding_texts)
|
|
|
344 |
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
|
345 |
|
346 |
boxes = (np.asarray(boxes) / 512).tolist()
|
347 |
+
boxes = [[box] for box in boxes]
|
348 |
grounding_instruction = json.dumps({obj: box for obj, box in zip(grounding_texts, boxes)})
|
349 |
+
language_instruction_list = language_instruction.strip('.').split(' ')
|
350 |
+
object_positions = []
|
351 |
+
for obj in grounding_texts:
|
352 |
+
obj_position = []
|
353 |
+
for word in obj.split(' '):
|
354 |
+
obj_first_index = language_instruction_list.index(word) + 1
|
355 |
+
obj_position.append(obj_first_index)
|
356 |
+
object_positions.append(obj_position)
|
357 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
358 |
+
|
359 |
+
gen_images = inference(device, unet, vae, tokenizer, text_encoder, language_instruction, cfg, attn_map, boxes, object_positions, batch_size, loss_scale, loss_threshold, max_iter, max_step, rand_seed, guidance_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
|
361 |
blank_samples = batch_size % 2 if batch_size > 1 else 0
|
362 |
gen_images = [gr.Image.update(value=x, visible=True) for i, x in enumerate(gen_images)] \
|
|
|
405 |
return np.array(img)
|
406 |
|
407 |
|
408 |
+
def draw(input, grounding_texts, new_image_trigger, state):
|
409 |
+
|
410 |
if type(input) == dict:
|
411 |
image = input['image']
|
412 |
mask = input['mask']
|
413 |
else:
|
414 |
mask = input
|
|
|
415 |
if mask.ndim == 3:
|
416 |
mask = mask[..., 0]
|
417 |
|
418 |
image_scale = 1.0
|
419 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
mask = binarize(mask)
|
421 |
if mask.shape != (512, 512):
|
422 |
# assert False, "should not receive any non- 512x512 masks."
|
|
|
431 |
if type(mask) != np.ndarray:
|
432 |
mask = np.array(mask)
|
433 |
|
434 |
+
if mask.sum() == 0:
|
435 |
state = {}
|
436 |
|
437 |
+
image = None
|
|
|
|
|
|
|
438 |
|
439 |
if 'boxes' not in state:
|
440 |
state['boxes'] = []
|
|
|
472 |
box_image_resize = np.array(box_image.resize((inpaint_hw, inpaint_hw)))
|
473 |
original_image = state['original_image'].copy()
|
474 |
box_image = sized_center_fill(original_image, box_image_resize, inpaint_hw, inpaint_hw)
|
|
|
475 |
return [box_image, new_image_trigger, image_scale, state]
|
476 |
|
477 |
|
|
|
501 |
cursor: pointer;
|
502 |
text-decoration: none;
|
503 |
}
|
504 |
+
|
505 |
+
.tooltip {
|
506 |
+
color: #555;
|
507 |
+
position: relative;
|
508 |
+
display: inline-block;
|
509 |
+
cursor: pointer;
|
510 |
+
}
|
511 |
+
|
512 |
+
.tooltip .tooltiptext {
|
513 |
+
visibility: hidden;
|
514 |
+
width: 400px;
|
515 |
+
background-color: #555;
|
516 |
+
color: #fff;
|
517 |
+
text-align: center;
|
518 |
+
padding: 5px;
|
519 |
+
border-radius: 5px;
|
520 |
+
position: absolute;
|
521 |
+
z-index: 1; /* Set z-index to 1 */
|
522 |
+
left: 10px;
|
523 |
+
top: 100%;
|
524 |
+
opacity: 0;
|
525 |
+
transition: opacity 0.3s;
|
526 |
+
}
|
527 |
+
|
528 |
+
.tooltip:hover .tooltiptext {
|
529 |
+
visibility: visible;
|
530 |
+
opacity: 1;
|
531 |
+
z-index: 9999; /* Set a high z-index value when hovering */
|
532 |
+
}
|
533 |
+
|
534 |
+
|
535 |
"""
|
536 |
|
537 |
rescale_js = """
|
|
|
550 |
with Blocks(
|
551 |
css=css,
|
552 |
analytics_enabled=False,
|
553 |
+
title="Layout-Guidance demo",
|
554 |
) as main:
|
555 |
description = """<p style="text-align: center; font-weight: bold;">
|
556 |
<span style="font-size: 28px">Layout Guidance</span>
|
557 |
<br>
|
558 |
<span style="font-size: 18px" id="paper-info">
|
559 |
+
[<a href=" " target="_blank">Project Page</a>]
|
560 |
+
[<a href=" " target="_blank">Paper</a>]
|
561 |
+
[<a href=" " target="_blank">GitHub</a>]
|
|
|
562 |
</span>
|
563 |
</p>
|
564 |
"""
|
565 |
gr.HTML(description)
|
566 |
+
with gr.Column():
|
567 |
+
language_instruction = gr.Textbox(
|
568 |
+
label="Text Prompt",
|
569 |
+
)
|
570 |
+
grounding_instruction = gr.Textbox(
|
571 |
+
label="Grounding instruction (Separated by semicolon)",
|
572 |
+
)
|
573 |
+
sketch_pad_trigger = gr.Number(value=0, visible=False)
|
574 |
+
sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
|
575 |
+
init_white_trigger = gr.Number(value=0, visible=False)
|
576 |
+
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
|
577 |
+
new_image_trigger = gr.Number(value=0, visible=False)
|
578 |
+
|
579 |
+
|
580 |
+
|
581 |
+
with gr.Row():
|
582 |
+
sketch_pad = ImageMask(label="Sketch Pad", elem_id="img2img_image")
|
583 |
+
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
|
584 |
+
out_gen_1 = gr.Image(type="pil", visible=True, label="Generated Image")
|
585 |
+
# out_gen_2 = gr.Image(type="pil", visible=True, label="Generated Image")
|
586 |
+
# out_gen_3 = gr.Image(type="pil", visible=True, show_label=False)
|
587 |
+
# out_gen_4 = gr.Image(type="pil", visible=True, show_label=False)
|
588 |
+
|
589 |
+
with gr.Row():
|
590 |
+
clear_btn = gr.Button(value='Clear')
|
591 |
+
gen_btn = gr.Button(value='Generate')
|
592 |
+
# clear_btn = gr.Button(value='Clear')
|
593 |
+
# clear_btn = gr.Button(value='Clear')
|
594 |
+
|
595 |
+
with gr.Accordion("Advanced Options", open=False):
|
596 |
+
with gr.Column():
|
597 |
+
description = """<div class="tooltip">Loss Scale Factor ⓘ
|
598 |
+
<span class="tooltiptext">The scale factor of the backward guidance loss. The larger it is, the better control we get while it sometimes losses fidelity. </span>
|
599 |
+
</div>
|
600 |
+
<div class="tooltip">Guidance Scale ⓘ
|
601 |
+
<span class="tooltiptext">The scale factor of classifier-free guidance. </span>
|
602 |
+
</div>
|
603 |
+
<div class="tooltip" >Max Iteration per Step ⓘ
|
604 |
+
<span class="tooltiptext">The max iterations of backward guidance in each diffusion inference process.</span>
|
605 |
+
</div>
|
606 |
+
<div class="tooltip" >Loss Threshold ⓘ
|
607 |
+
<span class="tooltiptext">The threshold of loss. If the loss computed by cross-attention map is smaller then the threshold, the backward guidance is stopped. </span>
|
608 |
+
</div>
|
609 |
+
<div class="tooltip" >Max Step of Backward Guidance ⓘ
|
610 |
+
<span class="tooltiptext">The max steps of backward guidance in diffusion inference process.</span>
|
611 |
+
</div>
|
612 |
+
"""
|
613 |
+
gr.HTML(description)
|
614 |
+
Loss_scale = gr.Slider(minimum=0, maximum=500, step=5, value=30,label="Loss Scale Factor")
|
615 |
+
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
|
616 |
+
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number of Samples", visible=False)
|
617 |
+
max_iter = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Max Iteration per Step")
|
618 |
+
loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss Threshold")
|
619 |
+
max_step = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Max Step of Backward Guidance")
|
620 |
+
# fix_seed = gr.Checkbox(value=True, label="Fixed seed")
|
621 |
+
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed")
|
622 |
+
|
623 |
+
# with gr.Column(scale=4):
|
624 |
+
# gr.HTML('<span style="font-size: 20px; font-weight: bold">Generated Images</span>')
|
625 |
+
# with gr.Row():
|
626 |
+
# out_gen_1 = gr.Image(type="pil", visible=True, show_label=False, label="Generated Image")
|
627 |
+
# out_gen_2 = gr.Image(type="pil", visible=True, show_label=False)
|
628 |
+
# with gr.Row():
|
629 |
+
# out_gen_3 = gr.Image(type="pil", visible=False, show_label=False)
|
630 |
+
# out_gen_4 = gr.Image(type="pil", visible=False, show_label=False)
|
631 |
|
632 |
state = gr.State({})
|
633 |
|
|
|
685 |
queue=False)
|
686 |
sketch_pad.edit(
|
687 |
draw,
|
688 |
+
inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
|
689 |
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
|
690 |
queue=False,
|
691 |
)
|
692 |
grounding_instruction.change(
|
693 |
draw,
|
694 |
+
inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
|
695 |
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
|
696 |
queue=False,
|
697 |
)
|
698 |
clear_btn.click(
|
699 |
clear,
|
700 |
inputs=[sketch_pad_trigger, sketch_pad_trigger, batch_size, state],
|
701 |
+
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, state],
|
|
|
702 |
queue=False)
|
703 |
+
|
|
|
|
|
|
|
|
|
|
|
704 |
sketch_pad_trigger.change(
|
705 |
controller.init_white,
|
706 |
inputs=[init_white_trigger],
|
|
|
711 |
inputs=[state],
|
712 |
outputs=[sketch_pad, state],
|
713 |
queue=False)
|
714 |
+
# batch_size.change(
|
715 |
+
# controller.change_n_samples,
|
716 |
+
# inputs=[batch_size],
|
717 |
+
# outputs=[out_gen_1, out_gen_2],
|
718 |
+
# queue=False)
|
719 |
|
720 |
+
# batch_size.change(
|
721 |
+
# controller.change_n_samples,
|
722 |
+
# inputs=[batch_size],
|
723 |
+
# outputs=[out_gen_1, out_gen_2],
|
724 |
+
# queue=False)
|
725 |
|
726 |
gen_btn.click(
|
727 |
generate,
|
728 |
inputs=[
|
729 |
+
language_instruction, grounding_instruction, sketch_pad,
|
730 |
+
loss_threshold, guidance_scale, batch_size, rand_seed,
|
|
|
731 |
max_step,
|
732 |
Loss_scale, max_iter,
|
733 |
state,
|
734 |
],
|
735 |
+
outputs=[out_gen_1, state],
|
736 |
queue=True
|
737 |
)
|
738 |
sketch_pad_resize_trigger.change(
|
|
|
752 |
gr.Examples(
|
753 |
examples=[
|
754 |
[
|
755 |
+
# "images/input.png",
|
756 |
"A hello kitty toy is playing with a purple ball.",
|
757 |
"hello kitty;ball",
|
758 |
"images/hello_kitty_results.png"
|
759 |
],
|
760 |
],
|
761 |
+
inputs=[language_instruction, grounding_instruction, out_gen_1],
|
762 |
outputs=None,
|
763 |
fn=None,
|
764 |
cache_examples=False,
|
|
|
766 |
|
767 |
main.queue(concurrency_count=1, api_open=False)
|
768 |
main.launch(share=False, show_api=False, show_error=True)
|
769 |
+
|
conf/net_conf.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
training:
|
2 |
+
use_ema: True
|
3 |
+
batch_size: 8
|
4 |
+
adam_beta1: 0.9
|
5 |
+
adam_beta2: 0.999
|
6 |
+
adam_weight_decay: 1e-2
|
7 |
+
adam_epsilon: 1e-08
|
8 |
+
lr_scheduler: constant
|
9 |
+
lr_warmup_steps: 0
|
10 |
+
max_train_steps: 50000
|
11 |
+
text_finetune_step: 50
|
12 |
+
unet_finetune_step: 50
|
13 |
+
alpha: 0.1
|
14 |
+
min_lr: 1e-6
|
15 |
+
warmup_epochs: 0
|
16 |
+
num_train_epochs: 300
|
17 |
+
accumulate_step: 1
|
18 |
+
lr: 1e-6
|
19 |
+
resume: ' '
|
20 |
+
down_attn_shift: -1
|
21 |
+
down_attn_map: -1
|
22 |
+
mid_attn_shift: -1
|
23 |
+
mid_attn_map: -1
|
24 |
+
up_attn_shift: -1
|
25 |
+
up_attn_map: -1
|
26 |
+
|
27 |
+
inference:
|
28 |
+
loss_scale: 30
|
29 |
+
batch_size: 1
|
30 |
+
loss_threshold: 0.2
|
31 |
+
max_iter: 5
|
32 |
+
index_step: 10
|
33 |
+
start_pair: 800
|
34 |
+
iteration_interval: 400
|
35 |
+
infer_iter: 0
|
conf/unet/config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.6.0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"attention_head_dim": 8,
|
6 |
+
"block_out_channels": [
|
7 |
+
320,
|
8 |
+
640,
|
9 |
+
1280,
|
10 |
+
1280
|
11 |
+
],
|
12 |
+
"center_input_sample": false,
|
13 |
+
"cross_attention_dim": 768,
|
14 |
+
"down_block_types": [
|
15 |
+
"CrossAttnDownBlock2D",
|
16 |
+
"CrossAttnDownBlock2D",
|
17 |
+
"CrossAttnDownBlock2D",
|
18 |
+
"DownBlock2D"
|
19 |
+
],
|
20 |
+
"downsample_padding": 1,
|
21 |
+
"flip_sin_to_cos": true,
|
22 |
+
"freq_shift": 0,
|
23 |
+
"in_channels": 4,
|
24 |
+
"layers_per_block": 2,
|
25 |
+
"mid_block_scale_factor": 1,
|
26 |
+
"norm_eps": 1e-05,
|
27 |
+
"norm_num_groups": 32,
|
28 |
+
"out_channels": 4,
|
29 |
+
"sample_size": 64,
|
30 |
+
"up_block_types": [
|
31 |
+
"UpBlock2D",
|
32 |
+
"CrossAttnUpBlock2D",
|
33 |
+
"CrossAttnUpBlock2D",
|
34 |
+
"CrossAttnUpBlock2D"
|
35 |
+
]
|
36 |
+
}
|
images/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
layout_guidance/__init__.py
ADDED
File without changes
|
layout_guidance/inference.py
ADDED
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# !pip install diffusers["torch"] transformers
|
2 |
+
import hydra
|
3 |
+
import torch
|
4 |
+
import yaml
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
7 |
+
from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from PIL import Image, ImageDraw, ImageFont
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import torch.nn as nn
|
12 |
+
import time
|
13 |
+
from accelerate import Accelerator
|
14 |
+
import torchvision.transforms as transforms
|
15 |
+
from torch.utils.tensorboard import SummaryWriter
|
16 |
+
from omegaconf import DictConfig, OmegaConf
|
17 |
+
from datetime import datetime
|
18 |
+
import logging
|
19 |
+
import itertools
|
20 |
+
from torch.utils.data import DataLoader
|
21 |
+
from tqdm import tqdm
|
22 |
+
from diffusers import LMSDiscreteScheduler
|
23 |
+
from diffusers.optimization import get_scheduler
|
24 |
+
from torch import autocast
|
25 |
+
from torch.cuda.amp import GradScaler
|
26 |
+
import pdb
|
27 |
+
import math
|
28 |
+
from my_model import unet_2d_condition
|
29 |
+
from typing import Iterable, Optional
|
30 |
+
import os
|
31 |
+
import json
|
32 |
+
import numpy as np
|
33 |
+
import scipy
|
34 |
+
|
35 |
+
def freeze_params(params):
|
36 |
+
for param in params:
|
37 |
+
param.requires_grad = False
|
38 |
+
def unfreeze_params(params):
|
39 |
+
for param in params:
|
40 |
+
param.requires_grad = True
|
41 |
+
|
42 |
+
|
43 |
+
class EMAModel:
|
44 |
+
"""
|
45 |
+
Exponential Moving Average of models weights
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999):
|
49 |
+
parameters = list(parameters)
|
50 |
+
print("list parameters")
|
51 |
+
self.shadow_params = [p.clone().detach() for p in parameters]
|
52 |
+
print("finish clone parameters")
|
53 |
+
|
54 |
+
self.decay = decay
|
55 |
+
self.optimization_step = 0
|
56 |
+
|
57 |
+
def get_decay(self, optimization_step):
|
58 |
+
"""
|
59 |
+
Compute the decay factor for the exponential moving average.
|
60 |
+
"""
|
61 |
+
value = (1 + optimization_step) / (10 + optimization_step)
|
62 |
+
return 1 - min(self.decay, value)
|
63 |
+
|
64 |
+
@torch.no_grad()
|
65 |
+
def step(self, parameters):
|
66 |
+
parameters = list(parameters)
|
67 |
+
|
68 |
+
self.optimization_step += 1
|
69 |
+
self.decay = self.get_decay(self.optimization_step)
|
70 |
+
|
71 |
+
for s_param, param in zip(self.shadow_params, parameters):
|
72 |
+
if param.requires_grad:
|
73 |
+
tmp = self.decay * (s_param - param)
|
74 |
+
s_param.sub_(tmp)
|
75 |
+
else:
|
76 |
+
s_param.copy_(param)
|
77 |
+
|
78 |
+
torch.cuda.empty_cache()
|
79 |
+
|
80 |
+
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
|
81 |
+
"""
|
82 |
+
Copy current averaged parameters into given collection of parameters.
|
83 |
+
Args:
|
84 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
85 |
+
updated with the stored moving averages. If `None`, the
|
86 |
+
parameters with which this `ExponentialMovingAverage` was
|
87 |
+
initialized will be used.
|
88 |
+
"""
|
89 |
+
parameters = list(parameters)
|
90 |
+
for s_param, param in zip(self.shadow_params, parameters):
|
91 |
+
param.data.copy_(s_param.data)
|
92 |
+
|
93 |
+
def to(self, device=None, dtype=None) -> None:
|
94 |
+
r"""c"""
|
95 |
+
# .to() on the tensors handles None correctly
|
96 |
+
self.shadow_params = [
|
97 |
+
p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
|
98 |
+
for p in self.shadow_params
|
99 |
+
]
|
100 |
+
|
101 |
+
def compute_visor_loss(attn_maps_mid, attn_maps_up, obj_a_positions, obj_b_positions, relationship):
|
102 |
+
loss = 0
|
103 |
+
for attn_map_integrated in attn_maps_mid:
|
104 |
+
attn_map = attn_map_integrated.chunk(2)[1]
|
105 |
+
|
106 |
+
#
|
107 |
+
b, i, j = attn_map.shape
|
108 |
+
H = W = int(math.sqrt(i))
|
109 |
+
weight_matrix_x = torch.zeros(size=(H, W)).cuda()
|
110 |
+
weight_matrix_y = torch.zeros(size=(H, W)).cuda()
|
111 |
+
for x_indx in range(W):
|
112 |
+
weight_matrix_x[:, x_indx] = x_indx
|
113 |
+
for y_indx in range(H):
|
114 |
+
weight_matrix_y[y_indx, :] = y_indx
|
115 |
+
|
116 |
+
# for obj_idx in range(object_number):
|
117 |
+
#
|
118 |
+
# bbox = bboxes[obj_idx]
|
119 |
+
obj_a_avg_x_total = 0
|
120 |
+
obj_a_avg_y_total = 0
|
121 |
+
for obj_a_position in obj_a_positions:
|
122 |
+
ca_map_obj = attn_map[:, :, obj_a_position].reshape(b, H, W)
|
123 |
+
# pdb.set_trace()
|
124 |
+
|
125 |
+
obj_a_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
|
126 |
+
obj_a_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
|
127 |
+
obj_a_avg_x_total += obj_a_avg_x
|
128 |
+
obj_a_avg_y_total += obj_a_avg_y
|
129 |
+
obj_a_avg_x_total = (obj_a_avg_x_total/len(obj_a_positions)).mean() / W
|
130 |
+
obj_a_avg_y_total = (obj_a_avg_y_total/len(obj_a_positions)).mean() / H
|
131 |
+
print('mid: obj_a_avg_x_total', obj_a_avg_x_total)
|
132 |
+
|
133 |
+
obj_b_avg_x_total = 0
|
134 |
+
obj_b_avg_y_total = 0
|
135 |
+
for obj_b_position in obj_b_positions:
|
136 |
+
ca_map_obj = attn_map[:, :, obj_b_position].reshape(b, H, W)
|
137 |
+
obj_b_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
|
138 |
+
obj_b_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
|
139 |
+
obj_b_avg_x_total += obj_b_avg_x
|
140 |
+
obj_b_avg_y_total += obj_b_avg_y
|
141 |
+
|
142 |
+
obj_b_avg_x_total = (obj_b_avg_x_total/len(obj_b_positions)).mean() / W
|
143 |
+
obj_b_avg_y_total = (obj_b_avg_y_total/len(obj_b_positions)).mean() / H
|
144 |
+
print('mid: obj_b_avg_x_total', obj_b_avg_x_total)
|
145 |
+
|
146 |
+
if relationship == 0:
|
147 |
+
loss += (obj_b_avg_x_total - obj_a_avg_x_total)
|
148 |
+
elif relationship == 1:
|
149 |
+
loss += (obj_a_avg_x_total - obj_b_avg_x_total)
|
150 |
+
elif relationship == 2:
|
151 |
+
loss += (obj_b_avg_y_total - obj_a_avg_y_total)
|
152 |
+
elif relationship == 3:
|
153 |
+
loss += (obj_a_avg_y_total - obj_b_avg_y_total)
|
154 |
+
|
155 |
+
|
156 |
+
for attn_map_integrated in attn_maps_up[0]:
|
157 |
+
attn_map = attn_map_integrated.chunk(2)[1]
|
158 |
+
|
159 |
+
b, i, j = attn_map.shape
|
160 |
+
H = W = int(math.sqrt(i))
|
161 |
+
weight_matrix_x = torch.zeros(size=(H, W)).cuda()
|
162 |
+
weight_matrix_y = torch.zeros(size=(H, W)).cuda()
|
163 |
+
for x_indx in range(W):
|
164 |
+
weight_matrix_x[:, x_indx] = x_indx
|
165 |
+
for y_indx in range(H):
|
166 |
+
weight_matrix_y[y_indx, :] = y_indx
|
167 |
+
|
168 |
+
# for obj_idx in range(object_number):
|
169 |
+
#
|
170 |
+
# bbox = bboxes[obj_idx]
|
171 |
+
obj_a_avg_x_total = 0
|
172 |
+
obj_a_avg_y_total = 0
|
173 |
+
for obj_a_position in obj_a_positions:
|
174 |
+
ca_map_obj = attn_map[:, :, obj_a_position].reshape(b, H, W)
|
175 |
+
obj_a_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
|
176 |
+
obj_a_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
|
177 |
+
obj_a_avg_x_total += obj_a_avg_x
|
178 |
+
obj_a_avg_y_total += obj_a_avg_y
|
179 |
+
obj_a_avg_x_total = (obj_a_avg_x_total / len(obj_a_positions)).mean() / W
|
180 |
+
obj_a_avg_y_total = (obj_a_avg_y_total / len(obj_a_positions)).mean() / H
|
181 |
+
print('up: obj_a_avg_x_total', obj_a_avg_x_total)
|
182 |
+
|
183 |
+
obj_b_avg_x_total = 0
|
184 |
+
obj_b_avg_y_total = 0
|
185 |
+
|
186 |
+
for obj_b_position in obj_b_positions:
|
187 |
+
ca_map_obj = attn_map[:, :, obj_b_position].reshape(b, H, W)
|
188 |
+
obj_b_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
|
189 |
+
obj_b_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
|
190 |
+
obj_b_avg_x_total += obj_b_avg_x
|
191 |
+
obj_b_avg_y_total += obj_b_avg_y
|
192 |
+
|
193 |
+
obj_b_avg_x_total = (obj_b_avg_x_total / len(obj_b_positions)).mean() / W
|
194 |
+
obj_b_avg_y_total = (obj_b_avg_y_total / len(obj_b_positions)).mean() / H
|
195 |
+
print('up: obj_b_avg_x_total', obj_b_avg_x_total)
|
196 |
+
|
197 |
+
if relationship == 0:
|
198 |
+
loss += (obj_a_avg_x_total - obj_b_avg_x_total)
|
199 |
+
elif relationship == 1:
|
200 |
+
loss += (obj_b_avg_x_total - obj_a_avg_x_total)
|
201 |
+
elif relationship == 2:
|
202 |
+
loss += (obj_a_avg_y_total - obj_b_avg_y_total)
|
203 |
+
elif relationship == 3:
|
204 |
+
loss += (obj_b_avg_y_total - obj_a_avg_y_total)
|
205 |
+
|
206 |
+
|
207 |
+
loss = loss / (len(attn_maps_up[0]) + len(attn_maps_mid))
|
208 |
+
return loss
|
209 |
+
|
210 |
+
|
211 |
+
@hydra.main(version_base=None, config_path="conf", config_name="config_visor_box")
|
212 |
+
def train(cfg: DictConfig):
|
213 |
+
# fix the randomness of torch
|
214 |
+
|
215 |
+
print(cfg)
|
216 |
+
with open('./conf/unet/origin_config.json') as f:
|
217 |
+
unet_config = json.load(f)
|
218 |
+
unet = unet_2d_condition.UNet2DConditionModel(**unet_config)
|
219 |
+
# ckp = torch.load('/Users/shil5883/Downloads/diffusion_pytorch_model.bin', map_location='cpu')
|
220 |
+
# prev_attn_map = torch.load('./attn_map.ckp', map_location='cpu')
|
221 |
+
|
222 |
+
ckp = torch.load('/work/minghao/chess_gen/diffusion_pytorch_model.bin', map_location='cpu')
|
223 |
+
prev_attn_map = torch.load('/work/minghao/chess_gen/visual_attn/2023-02-02/15-05-51/epoch_100_sche_constant_lr_1e-06_ac_1/attn_map.ckp', map_location='cpu')
|
224 |
+
|
225 |
+
# prev_attn_map = torch.load('/work/minghao/chess_gen/visual_attn/2023-01-16/18-58-12/epoch_100_sche_constant_lr_1e-06_ac_1/attn_map.ckp', map_location='cpu')
|
226 |
+
unet.load_state_dict(ckp)
|
227 |
+
unet_original = UNet2DConditionModel(**unet_config)
|
228 |
+
unet_original.load_state_dict(ckp)
|
229 |
+
date_now, time_now = datetime.now().strftime("%Y-%m-%d,%H-%M-%S").split(',')
|
230 |
+
|
231 |
+
# cfg.general.save_path = os.path.join(cfg.general.save_path, date_now, time_now)
|
232 |
+
# if not os.path.exists(cfg.general.save_path ):
|
233 |
+
# os.makedirs(cfg.general.save_path)
|
234 |
+
# cfg.general.save_path
|
235 |
+
mixed_precision = 'fp16' if torch.cuda.is_available() else 'no'
|
236 |
+
accelerator = Accelerator(
|
237 |
+
gradient_accumulation_steps=cfg.training.accumulate_step,
|
238 |
+
mixed_precision=mixed_precision,
|
239 |
+
log_with="tensorboard",
|
240 |
+
logging_dir='./',
|
241 |
+
)
|
242 |
+
# initialize dataset and dataloader
|
243 |
+
if accelerator.is_main_process:
|
244 |
+
print("Loading the dataset!!!!!")
|
245 |
+
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
|
246 |
+
# train_dataset = ICLEVERDataset(cfg.data.data_path, tokenizer, cfg, prefix='train')
|
247 |
+
# val_dataset = ICLEVERDataset(cfg.data.data_path, tokenizer, cfg, prefix='val')
|
248 |
+
# train_loader = DataLoader(train_dataset, batch_size=cfg.training.batch_size, shuffle=True, num_workers=2, pin_memory=False)
|
249 |
+
# val_loader = DataLoader(val_dataset, batch_size=cfg.training.batch_size * 2, shuffle=True, num_workers=2, pin_memory=False)
|
250 |
+
|
251 |
+
if accelerator.is_main_process:
|
252 |
+
print("Complete loading the dataset!!!!!")
|
253 |
+
|
254 |
+
if accelerator.is_main_process:
|
255 |
+
print("Complete load the noise scheduler!!!!!")
|
256 |
+
with open("config.yaml", "w") as f:
|
257 |
+
OmegaConf.save(cfg, f)
|
258 |
+
if not os.path.exists(cfg.general.save_path) and accelerator.is_main_process:
|
259 |
+
os.makedirs(cfg.general.save_path)
|
260 |
+
if accelerator.is_main_process:
|
261 |
+
print("saved load the noise scheduler!!!!!")
|
262 |
+
|
263 |
+
# Move unet to device
|
264 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
265 |
+
# load pretrained models and schedular
|
266 |
+
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
|
267 |
+
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
|
268 |
+
|
269 |
+
# boards_embedder.to(device)
|
270 |
+
if accelerator.is_main_process:
|
271 |
+
print("move the model to device!!!!!")
|
272 |
+
# Keep vae and unet in eval model as we don't train these
|
273 |
+
|
274 |
+
# Initialize the optimizer
|
275 |
+
cfg.training.lr = (
|
276 |
+
cfg.training.lr * cfg.training.accumulate_step * cfg.training.batch_size * accelerator.num_processes
|
277 |
+
)
|
278 |
+
# Move vae and unet to device
|
279 |
+
vae.to(device)
|
280 |
+
unet.to(device)
|
281 |
+
text_encoder.to(device)
|
282 |
+
# prev_attn_map.to(device)
|
283 |
+
unet_original.to(device)
|
284 |
+
vae.eval()
|
285 |
+
unet.eval()
|
286 |
+
text_encoder.eval()
|
287 |
+
unet_original.eval()
|
288 |
+
# tokenizer.to(device)
|
289 |
+
# if accelerator.is_main_process:
|
290 |
+
print("prepare the accelerator module at process: {}!!!!!".format(accelerator.process_index))
|
291 |
+
# unet = accelerator.prepare(unet)
|
292 |
+
|
293 |
+
print("done the accelerator module at process: {}!!!!!".format(accelerator.process_index))
|
294 |
+
|
295 |
+
# Create EMA for the unet.
|
296 |
+
# if cfg.training.use_ema:
|
297 |
+
# ema_unet = EMAModel(unet.parameters())
|
298 |
+
# ema_encoder = EMAModel(boards_embedder.parameters())
|
299 |
+
ema_unet = None
|
300 |
+
# print(start_ema)
|
301 |
+
if cfg.training.use_ema:
|
302 |
+
if accelerator.is_main_process:
|
303 |
+
print("Using the EMA model!!!!!")
|
304 |
+
print("start EMA at process: {}!!!!!".format(accelerator.process_index))
|
305 |
+
|
306 |
+
ema_unet = EMAModel(unet.parameters())
|
307 |
+
# ema_encoder = EMAModel(boards_embedder.parameters())
|
308 |
+
|
309 |
+
# prompt = 'A traffic light below a sink'
|
310 |
+
templates = ['{} to the left of {}', '{} to the right of {}', '{} above {}', '{} below {}']
|
311 |
+
bboxes_template = [[0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 1.0, 0.5], [0.5, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0]]
|
312 |
+
bboxes_template_list = [[0, 2], [2, 0], [1, 3], [3, 1]]
|
313 |
+
iteration_start = cfg.inference.start_pair
|
314 |
+
iteration_now = iteration_start
|
315 |
+
iteration_interval = cfg.inference.iteration_interval
|
316 |
+
with open('./coco_paris.txt', 'r') as f:
|
317 |
+
image_pairs = f.readlines()
|
318 |
+
for image_pair in tqdm(image_pairs[iteration_start: iteration_start + iteration_interval]):
|
319 |
+
obj_a, obj_b = image_pair.strip().split(',')[0], image_pair.strip().split(',')[1]
|
320 |
+
obj_a = 'A {}'.format(obj_a) if obj_a[0] not in ['a', 'e', 'i', 'o', 'u'] else 'An {}'.format(obj_a)
|
321 |
+
obj_b = 'a {}'.format(obj_b) if obj_b[0] not in ['a', 'e', 'i', 'o', 'u'] else 'an {}'.format(obj_b)
|
322 |
+
for idx, template in enumerate(templates):
|
323 |
+
prompt = template.format(obj_a, obj_b)
|
324 |
+
obj_a_len = len(obj_a.split(' ')) - 1
|
325 |
+
obj_a_position = [2] if obj_a_len == 1 else [2, 3]
|
326 |
+
obj_b_position = [obj_a_len + 1 + len(template.split(' ')) + i for i in range(len(obj_b.split(' '))-1)]
|
327 |
+
obj_positions = [obj_a_position, obj_b_position]
|
328 |
+
obj_a_boxes = [bboxes_template[bboxes_template_list[idx][0]].copy() for _ in range(len(obj_a.split(' ')) - 1)]
|
329 |
+
obj_b_boxes = [bboxes_template[bboxes_template_list[idx][1]].copy() for _ in range(len(obj_b.split(' ')) - 1)]
|
330 |
+
obj_boxes = [obj_a_boxes, obj_b_boxes]
|
331 |
+
print(prompt, obj_positions, obj_boxes)
|
332 |
+
# for infer_iter in range(1):
|
333 |
+
inference(device, unet, unet_original, vae, tokenizer, text_encoder, prompt, cfg, prev_attn_map, bboxes=obj_boxes, object_positions=obj_positions, infer_iter=cfg.inference.infer_iter, pair_id=iteration_now)
|
334 |
+
|
335 |
+
|
336 |
+
obj_b, obj_a = image_pair.strip().split(',')[0], image_pair.strip().split(',')[1]
|
337 |
+
obj_a = 'A {}'.format(obj_a) if obj_a[0] not in ['a', 'e', 'i', 'o', 'u'] else 'An {}'.format(obj_a)
|
338 |
+
obj_b = 'a {}'.format(obj_b) if obj_b[0] not in ['a', 'e', 'i', 'o', 'u'] else 'an {}'.format(obj_b)
|
339 |
+
for idx, template in enumerate(templates):
|
340 |
+
prompt = template.format(obj_a, obj_b)
|
341 |
+
obj_a_len = len(obj_a.split(' ')) - 1
|
342 |
+
obj_a_position = [2] if obj_a_len == 1 else [2, 3]
|
343 |
+
obj_b_position = [obj_a_len + 1 + len(template.split(' ')) + i for i in range(len(obj_b.split(' '))-1)]
|
344 |
+
obj_positions = [obj_a_position, obj_b_position]
|
345 |
+
obj_a_boxes = [bboxes_template[bboxes_template_list[idx][0]].copy() for _ in range(len(obj_a.split(' ')) - 1)]
|
346 |
+
obj_b_boxes = [bboxes_template[bboxes_template_list[idx][1]].copy() for _ in range(len(obj_b.split(' ')) - 1)]
|
347 |
+
obj_boxes = [obj_a_boxes, obj_b_boxes]
|
348 |
+
print(prompt, obj_positions, obj_boxes)
|
349 |
+
inference(device, unet, unet_original, vae, tokenizer, text_encoder, prompt, cfg, prev_attn_map, bboxes=obj_boxes, object_positions=obj_positions, infer_iter=cfg.inference.infer_iter, pair_id=iteration_now)
|
350 |
+
iteration_now += 1
|
351 |
+
def compute_ca_loss(attn_maps_mid, attn_maps_up, bboxes, object_positions):
|
352 |
+
loss = 0
|
353 |
+
object_number = len(bboxes)
|
354 |
+
if object_number == 0:
|
355 |
+
return torch.tensor(0).float().cuda()
|
356 |
+
for attn_map_integrated in attn_maps_mid:
|
357 |
+
attn_map = attn_map_integrated.chunk(2)[1]
|
358 |
+
|
359 |
+
#
|
360 |
+
b, i, j = attn_map.shape
|
361 |
+
H = W = int(math.sqrt(i))
|
362 |
+
# pdb.set_trace()
|
363 |
+
for obj_idx in range(object_number):
|
364 |
+
obj_loss = 0
|
365 |
+
mask = torch.zeros(size=(H, W)).cuda()
|
366 |
+
for obj_box in bboxes[obj_idx]:
|
367 |
+
|
368 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
369 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
370 |
+
mask[y_min: y_max, x_min: x_max] = 1
|
371 |
+
|
372 |
+
for obj_position in object_positions[obj_idx]:
|
373 |
+
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
|
374 |
+
# ca_map_obj = attn_map[:, :, object_positions[obj_position]].reshape(b, H, W)
|
375 |
+
|
376 |
+
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1)/ca_map_obj.reshape(b, -1).sum(dim=-1)
|
377 |
+
|
378 |
+
obj_loss += torch.mean((1 - activation_value) ** 2)
|
379 |
+
loss += (obj_loss/len(object_positions[obj_idx]))
|
380 |
+
# print("??", obj_idx, obj_loss/len(object_positions[obj_idx]))
|
381 |
+
|
382 |
+
# compute loss on padding tokens
|
383 |
+
# activation_value = torch.zeros(size=(b, )).cuda()
|
384 |
+
# for obj_idx in range(object_number):
|
385 |
+
# bbox = bboxes[obj_idx]
|
386 |
+
# ca_map_obj = attn_map[:, :, padding_start:].reshape(b, H, W, -1)
|
387 |
+
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
|
388 |
+
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
|
389 |
+
#
|
390 |
+
# loss += torch.mean((1 - activation_value) ** 2)
|
391 |
+
|
392 |
+
|
393 |
+
for attn_map_integrated in attn_maps_up[0]:
|
394 |
+
attn_map = attn_map_integrated.chunk(2)[1]
|
395 |
+
#
|
396 |
+
b, i, j = attn_map.shape
|
397 |
+
H = W = int(math.sqrt(i))
|
398 |
+
|
399 |
+
for obj_idx in range(object_number):
|
400 |
+
obj_loss = 0
|
401 |
+
mask = torch.zeros(size=(H, W)).cuda()
|
402 |
+
for obj_box in bboxes[obj_idx]:
|
403 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
404 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
405 |
+
mask[y_min: y_max, x_min: x_max] = 1
|
406 |
+
|
407 |
+
for obj_position in object_positions[obj_idx]:
|
408 |
+
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
|
409 |
+
# ca_map_obj = attn_map[:, :, object_positions[obj_position]].reshape(b, H, W)
|
410 |
+
|
411 |
+
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(
|
412 |
+
dim=-1)
|
413 |
+
|
414 |
+
obj_loss += torch.mean((1 - activation_value) ** 2)
|
415 |
+
loss += (obj_loss / len(object_positions[obj_idx]))
|
416 |
+
|
417 |
+
# compute loss on padding tokens
|
418 |
+
# activation_value = torch.zeros(size=(b, )).cuda()
|
419 |
+
# for obj_idx in range(object_number):
|
420 |
+
# bbox = bboxes[obj_idx]
|
421 |
+
# ca_map_obj = attn_map[:, :,padding_start:].reshape(b, H, W, -1)
|
422 |
+
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
|
423 |
+
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
|
424 |
+
#
|
425 |
+
# loss += torch.mean((1 - activation_value) ** 2)
|
426 |
+
loss = loss / (object_number * (len(attn_maps_up[0]) + len(attn_maps_mid)))
|
427 |
+
return loss
|
428 |
+
def plt_all_attn_map_in_one(attn_map_integrated_list_down, attn_map_integrated_list_mid, attn_map_integrated_list_up, image, prompt, cfg, t, prefix='all'):
|
429 |
+
|
430 |
+
prompt_split = prompt.split(' ')
|
431 |
+
prompt_len = len(prompt_split) + 4
|
432 |
+
|
433 |
+
total_layers = len(attn_map_integrated_list_down) + len(attn_map_integrated_list_mid) + len(attn_map_integrated_list_up)
|
434 |
+
fig, axs = plt.subplots(nrows=total_layers+1, ncols=prompt_len, figsize=(4 * prompt_len, 4 * total_layers))
|
435 |
+
fig.suptitle(prompt, fontsize=32)
|
436 |
+
fig.tight_layout()
|
437 |
+
cnt = 1
|
438 |
+
ax = axs[0][0]
|
439 |
+
ax.imshow(image)
|
440 |
+
for prompt_idx in range(prompt_len):
|
441 |
+
ax = axs[0][prompt_idx]
|
442 |
+
ax.set_axis_off()
|
443 |
+
for layer, attn_map_integrated in enumerate(attn_map_integrated_list_down):
|
444 |
+
attn_map_uncond, attn_map = attn_map_integrated.chunk(2)
|
445 |
+
grid_size = int(math.sqrt(attn_map.shape[1]))
|
446 |
+
for prompt_idx in range(prompt_len):
|
447 |
+
ax = axs[cnt][prompt_idx]
|
448 |
+
if prompt_idx == 0:
|
449 |
+
ax.set_ylabel('down {}'.format(layer), rotation=0, size='large')
|
450 |
+
mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy()
|
451 |
+
im = ax.imshow(mask, cmap='YlGn')
|
452 |
+
ax.set_axis_off()
|
453 |
+
cnt += 1
|
454 |
+
|
455 |
+
for layer, attn_map_integrated in enumerate(attn_map_integrated_list_mid):
|
456 |
+
attn_map_uncond, attn_map = attn_map_integrated.chunk(2)
|
457 |
+
grid_size = int(math.sqrt(attn_map.shape[1]))
|
458 |
+
for prompt_idx in range(prompt_len):
|
459 |
+
ax = axs[cnt][prompt_idx]
|
460 |
+
if prompt_idx ==0:
|
461 |
+
ax.set_ylabel('mid {}'.format(layer), rotation=0, size='large')
|
462 |
+
mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy()
|
463 |
+
im = ax.imshow(mask, cmap='YlGn')
|
464 |
+
ax.set_axis_off()
|
465 |
+
cnt += 1
|
466 |
+
|
467 |
+
for layer, attn_map_integrated in enumerate(attn_map_integrated_list_up):
|
468 |
+
attn_map_uncond, attn_map = attn_map_integrated.chunk(2)
|
469 |
+
grid_size = int(math.sqrt(attn_map.shape[1]))
|
470 |
+
for prompt_idx in range(prompt_len):
|
471 |
+
ax = axs[cnt][prompt_idx]
|
472 |
+
if prompt_idx ==0:
|
473 |
+
ax.set_ylabel('up {}'.format(layer), rotation=0, size='large')
|
474 |
+
mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy()
|
475 |
+
im = ax.imshow(mask, cmap='YlGn')
|
476 |
+
ax.set_axis_off()
|
477 |
+
cnt += 1
|
478 |
+
|
479 |
+
if not os.path.exists(cfg.general.save_path + "/{}".format(prefix)):
|
480 |
+
os.makedirs(cfg.general.save_path + "/{}".format(prefix))
|
481 |
+
plt.savefig(cfg.general.save_path + "/{}/step_{}.png".format(prefix, str(int(t)).zfill(4)))
|
482 |
+
# generate_video()
|
483 |
+
plt.close()
|
484 |
+
|
485 |
+
if __name__=="__main__":
|
486 |
+
train()
|
487 |
+
|
488 |
+
|
my_model/__init__.py
ADDED
File without changes
|
my_model/attention.py
ADDED
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import math
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Optional
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.modeling_utils import ModelMixin
|
24 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
25 |
+
from diffusers.utils import BaseOutput
|
26 |
+
from diffusers.utils.import_utils import is_xformers_available
|
27 |
+
import scipy
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class Transformer2DModelOutput(BaseOutput):
|
31 |
+
"""
|
32 |
+
Args:
|
33 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
34 |
+
Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
|
35 |
+
for the unnoised latent pixels.
|
36 |
+
"""
|
37 |
+
|
38 |
+
sample: torch.FloatTensor
|
39 |
+
|
40 |
+
|
41 |
+
if is_xformers_available():
|
42 |
+
import xformers
|
43 |
+
import xformers.ops
|
44 |
+
else:
|
45 |
+
xformers = None
|
46 |
+
|
47 |
+
|
48 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
49 |
+
"""
|
50 |
+
Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
|
51 |
+
embeddings) inputs_coarse.
|
52 |
+
|
53 |
+
When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
|
54 |
+
transformer action. Finally, reshape to image.
|
55 |
+
|
56 |
+
When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
|
57 |
+
embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
|
58 |
+
classes of unnoised image.
|
59 |
+
|
60 |
+
Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
|
61 |
+
image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.
|
62 |
+
|
63 |
+
Parameters:
|
64 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
65 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
66 |
+
in_channels (`int`, *optional*):
|
67 |
+
Pass if the input is continuous. The number of channels in the input and output.
|
68 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
69 |
+
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
70 |
+
cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
|
71 |
+
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
|
72 |
+
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
|
73 |
+
`ImagePositionalEmbeddings`.
|
74 |
+
num_vector_embeds (`int`, *optional*):
|
75 |
+
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
|
76 |
+
Includes the class for the masked latent pixel.
|
77 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
78 |
+
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
|
79 |
+
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
|
80 |
+
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
|
81 |
+
up to but not more than steps than `num_embeds_ada_norm`.
|
82 |
+
attention_bias (`bool`, *optional*):
|
83 |
+
Configure if the TransformerBlocks' attention should contain a bias parameter.
|
84 |
+
"""
|
85 |
+
|
86 |
+
@register_to_config
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
num_attention_heads: int = 16,
|
90 |
+
attention_head_dim: int = 88,
|
91 |
+
in_channels: Optional[int] = None,
|
92 |
+
num_layers: int = 1,
|
93 |
+
dropout: float = 0.0,
|
94 |
+
norm_num_groups: int = 32,
|
95 |
+
cross_attention_dim: Optional[int] = None,
|
96 |
+
attention_bias: bool = False,
|
97 |
+
sample_size: Optional[int] = None,
|
98 |
+
num_vector_embeds: Optional[int] = None,
|
99 |
+
activation_fn: str = "geglu",
|
100 |
+
num_embeds_ada_norm: Optional[int] = None,
|
101 |
+
):
|
102 |
+
super().__init__()
|
103 |
+
self.num_attention_heads = num_attention_heads
|
104 |
+
self.attention_head_dim = attention_head_dim
|
105 |
+
inner_dim = num_attention_heads * attention_head_dim
|
106 |
+
|
107 |
+
# 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
108 |
+
# Define whether input is continuous or discrete depending on configuration
|
109 |
+
self.is_input_continuous = in_channels is not None
|
110 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
111 |
+
|
112 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
113 |
+
raise ValueError(
|
114 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
115 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
116 |
+
)
|
117 |
+
elif not self.is_input_continuous and not self.is_input_vectorized:
|
118 |
+
raise ValueError(
|
119 |
+
f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
|
120 |
+
" sure that either `in_channels` or `num_vector_embeds` is not None."
|
121 |
+
)
|
122 |
+
|
123 |
+
# 2. Define input layers
|
124 |
+
if self.is_input_continuous:
|
125 |
+
self.in_channels = in_channels
|
126 |
+
|
127 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
128 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
129 |
+
elif self.is_input_vectorized:
|
130 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
131 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
132 |
+
|
133 |
+
self.height = sample_size
|
134 |
+
self.width = sample_size
|
135 |
+
self.num_vector_embeds = num_vector_embeds
|
136 |
+
self.num_latent_pixels = self.height * self.width
|
137 |
+
|
138 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
139 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
140 |
+
)
|
141 |
+
|
142 |
+
# 3. Define transformers blocks
|
143 |
+
self.transformer_blocks = nn.ModuleList(
|
144 |
+
[
|
145 |
+
BasicTransformerBlock(
|
146 |
+
inner_dim,
|
147 |
+
num_attention_heads,
|
148 |
+
attention_head_dim,
|
149 |
+
dropout=dropout,
|
150 |
+
cross_attention_dim=cross_attention_dim,
|
151 |
+
activation_fn=activation_fn,
|
152 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
153 |
+
attention_bias=attention_bias,
|
154 |
+
)
|
155 |
+
for d in range(num_layers)
|
156 |
+
]
|
157 |
+
)
|
158 |
+
|
159 |
+
# 4. Define output layers
|
160 |
+
if self.is_input_continuous:
|
161 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
162 |
+
elif self.is_input_vectorized:
|
163 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
164 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
165 |
+
|
166 |
+
def _set_attention_slice(self, slice_size):
|
167 |
+
for block in self.transformer_blocks:
|
168 |
+
block._set_attention_slice(slice_size)
|
169 |
+
|
170 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attn_map=None, attn_shift=False, obj_ids=None, relationship=None, return_dict: bool = True):
|
171 |
+
"""
|
172 |
+
Args:
|
173 |
+
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
|
174 |
+
When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
|
175 |
+
hidden_states
|
176 |
+
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
|
177 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
178 |
+
self-attention.
|
179 |
+
timestep ( `torch.long`, *optional*):
|
180 |
+
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
|
181 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
182 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
|
186 |
+
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
|
187 |
+
tensor.
|
188 |
+
"""
|
189 |
+
# 1. Input
|
190 |
+
if self.is_input_continuous:
|
191 |
+
batch, channel, height, weight = hidden_states.shape
|
192 |
+
residual = hidden_states
|
193 |
+
hidden_states = self.norm(hidden_states)
|
194 |
+
hidden_states = self.proj_in(hidden_states)
|
195 |
+
inner_dim = hidden_states.shape[1]
|
196 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
197 |
+
elif self.is_input_vectorized:
|
198 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
199 |
+
|
200 |
+
# 2. Blocks
|
201 |
+
for block in self.transformer_blocks:
|
202 |
+
hidden_states, cross_attn_prob, save_key = block(hidden_states, context=encoder_hidden_states, timestep=timestep, attn_map=attn_map, attn_shift=attn_shift, obj_ids=obj_ids, relationship=relationship)
|
203 |
+
|
204 |
+
# 3. Output
|
205 |
+
if self.is_input_continuous:
|
206 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
|
207 |
+
hidden_states = self.proj_out(hidden_states)
|
208 |
+
output = hidden_states + residual
|
209 |
+
elif self.is_input_vectorized:
|
210 |
+
hidden_states = self.norm_out(hidden_states)
|
211 |
+
logits = self.out(hidden_states)
|
212 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
213 |
+
logits = logits.permute(0, 2, 1)
|
214 |
+
|
215 |
+
# log(p(x_0))
|
216 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
217 |
+
|
218 |
+
if not return_dict:
|
219 |
+
return (output,)
|
220 |
+
|
221 |
+
return Transformer2DModelOutput(sample=output), cross_attn_prob, save_key
|
222 |
+
|
223 |
+
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
224 |
+
for block in self.transformer_blocks:
|
225 |
+
block._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
226 |
+
|
227 |
+
|
228 |
+
class AttentionBlock(nn.Module):
|
229 |
+
"""
|
230 |
+
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
|
231 |
+
to the N-d case.
|
232 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
233 |
+
Uses three q, k, v linear layers to compute attention.
|
234 |
+
|
235 |
+
Parameters:
|
236 |
+
channels (`int`): The number of channels in the input and output.
|
237 |
+
num_head_channels (`int`, *optional*):
|
238 |
+
The number of channels in each head. If None, then `num_heads` = 1.
|
239 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
|
240 |
+
rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
|
241 |
+
eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
|
242 |
+
"""
|
243 |
+
|
244 |
+
def __init__(
|
245 |
+
self,
|
246 |
+
channels: int,
|
247 |
+
num_head_channels: Optional[int] = None,
|
248 |
+
norm_num_groups: int = 32,
|
249 |
+
rescale_output_factor: float = 1.0,
|
250 |
+
eps: float = 1e-5,
|
251 |
+
):
|
252 |
+
super().__init__()
|
253 |
+
self.channels = channels
|
254 |
+
|
255 |
+
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
|
256 |
+
self.num_head_size = num_head_channels
|
257 |
+
self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
|
258 |
+
|
259 |
+
# define q,k,v as linear layers
|
260 |
+
self.query = nn.Linear(channels, channels)
|
261 |
+
self.key = nn.Linear(channels, channels)
|
262 |
+
self.value = nn.Linear(channels, channels)
|
263 |
+
|
264 |
+
self.rescale_output_factor = rescale_output_factor
|
265 |
+
self.proj_attn = nn.Linear(channels, channels, 1)
|
266 |
+
|
267 |
+
def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
|
268 |
+
new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
|
269 |
+
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
|
270 |
+
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
|
271 |
+
return new_projection
|
272 |
+
|
273 |
+
def forward(self, hidden_states):
|
274 |
+
residual = hidden_states
|
275 |
+
batch, channel, height, width = hidden_states.shape
|
276 |
+
|
277 |
+
# norm
|
278 |
+
hidden_states = self.group_norm(hidden_states)
|
279 |
+
|
280 |
+
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)
|
281 |
+
|
282 |
+
# proj to q, k, v
|
283 |
+
query_proj = self.query(hidden_states)
|
284 |
+
key_proj = self.key(hidden_states)
|
285 |
+
value_proj = self.value(hidden_states)
|
286 |
+
|
287 |
+
# transpose
|
288 |
+
query_states = self.transpose_for_scores(query_proj)
|
289 |
+
key_states = self.transpose_for_scores(key_proj)
|
290 |
+
value_states = self.transpose_for_scores(value_proj)
|
291 |
+
|
292 |
+
# get scores
|
293 |
+
scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
|
294 |
+
attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) # TODO: use baddmm
|
295 |
+
attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
|
296 |
+
|
297 |
+
# compute attention output
|
298 |
+
hidden_states = torch.matmul(attention_probs, value_states)
|
299 |
+
|
300 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
|
301 |
+
new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
|
302 |
+
hidden_states = hidden_states.view(new_hidden_states_shape)
|
303 |
+
|
304 |
+
# compute next hidden_states
|
305 |
+
hidden_states = self.proj_attn(hidden_states)
|
306 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)
|
307 |
+
|
308 |
+
# res connect and rescale
|
309 |
+
hidden_states = (hidden_states + residual) / self.rescale_output_factor
|
310 |
+
return hidden_states
|
311 |
+
|
312 |
+
|
313 |
+
class BasicTransformerBlock(nn.Module):
|
314 |
+
r"""
|
315 |
+
A basic Transformer block.
|
316 |
+
|
317 |
+
Parameters:
|
318 |
+
dim (`int`): The number of channels in the input and output.
|
319 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
320 |
+
attention_head_dim (`int`): The number of channels in each head.
|
321 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
322 |
+
cross_attention_dim (`int`, *optional*): The size of the context vector for cross attention.
|
323 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
324 |
+
num_embeds_ada_norm (:
|
325 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
326 |
+
attention_bias (:
|
327 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
328 |
+
"""
|
329 |
+
|
330 |
+
def __init__(
|
331 |
+
self,
|
332 |
+
dim: int,
|
333 |
+
num_attention_heads: int,
|
334 |
+
attention_head_dim: int,
|
335 |
+
dropout=0.0,
|
336 |
+
cross_attention_dim: Optional[int] = None,
|
337 |
+
activation_fn: str = "geglu",
|
338 |
+
num_embeds_ada_norm: Optional[int] = None,
|
339 |
+
attention_bias: bool = False,
|
340 |
+
):
|
341 |
+
super().__init__()
|
342 |
+
self.attn1 = CrossAttention(
|
343 |
+
query_dim=dim,
|
344 |
+
heads=num_attention_heads,
|
345 |
+
dim_head=attention_head_dim,
|
346 |
+
dropout=dropout,
|
347 |
+
bias=attention_bias,
|
348 |
+
) # is a self-attention
|
349 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
350 |
+
self.attn2 = CrossAttention(
|
351 |
+
query_dim=dim,
|
352 |
+
cross_attention_dim=cross_attention_dim,
|
353 |
+
heads=num_attention_heads,
|
354 |
+
dim_head=attention_head_dim,
|
355 |
+
dropout=dropout,
|
356 |
+
bias=attention_bias,
|
357 |
+
) # is self-attn if context is none
|
358 |
+
|
359 |
+
# layer norms
|
360 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
361 |
+
if self.use_ada_layer_norm:
|
362 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
363 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
364 |
+
else:
|
365 |
+
self.norm1 = nn.LayerNorm(dim)
|
366 |
+
self.norm2 = nn.LayerNorm(dim)
|
367 |
+
self.norm3 = nn.LayerNorm(dim)
|
368 |
+
|
369 |
+
def _set_attention_slice(self, slice_size):
|
370 |
+
self.attn1._slice_size = slice_size
|
371 |
+
self.attn2._slice_size = slice_size
|
372 |
+
|
373 |
+
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
374 |
+
if not is_xformers_available():
|
375 |
+
print("Here is how to install it")
|
376 |
+
raise ModuleNotFoundError(
|
377 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
378 |
+
" xformers",
|
379 |
+
name="xformers",
|
380 |
+
)
|
381 |
+
elif not torch.cuda.is_available():
|
382 |
+
raise ValueError(
|
383 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
384 |
+
" available for GPU "
|
385 |
+
)
|
386 |
+
else:
|
387 |
+
try:
|
388 |
+
# Make sure we can run the memory efficient attention
|
389 |
+
_ = xformers.ops.memory_efficient_attention(
|
390 |
+
torch.randn((1, 2, 40), device="cuda"),
|
391 |
+
torch.randn((1, 2, 40), device="cuda"),
|
392 |
+
torch.randn((1, 2, 40), device="cuda"),
|
393 |
+
)
|
394 |
+
except Exception as e:
|
395 |
+
raise e
|
396 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
397 |
+
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
398 |
+
|
399 |
+
def forward(self, hidden_states, context=None, timestep=None, attn_map=None, attn_shift=False, obj_ids=None, relationship=None):
|
400 |
+
# 1. Self-Attention
|
401 |
+
norm_hidden_states = (
|
402 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
403 |
+
)
|
404 |
+
tmp_hidden_states, cross_attn_prob, save_key = self.attn1(norm_hidden_states)
|
405 |
+
hidden_states = tmp_hidden_states + hidden_states
|
406 |
+
|
407 |
+
# 2. Cross-Attention
|
408 |
+
norm_hidden_states = (
|
409 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
410 |
+
)
|
411 |
+
tmp_hidden_states, cross_attn_prob, save_key = self.attn2(norm_hidden_states, context=context, attn_map=attn_map, attn_shift=attn_shift, obj_ids=obj_ids, relationship=relationship)
|
412 |
+
hidden_states = tmp_hidden_states + hidden_states
|
413 |
+
|
414 |
+
# 3. Feed-forward
|
415 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
416 |
+
|
417 |
+
return hidden_states, cross_attn_prob, save_key
|
418 |
+
|
419 |
+
|
420 |
+
class CrossAttention(nn.Module):
|
421 |
+
r"""
|
422 |
+
A cross attention layer.
|
423 |
+
|
424 |
+
Parameters:
|
425 |
+
query_dim (`int`): The number of channels in the query.
|
426 |
+
cross_attention_dim (`int`, *optional*):
|
427 |
+
The number of channels in the context. If not given, defaults to `query_dim`.
|
428 |
+
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
|
429 |
+
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
|
430 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
431 |
+
bias (`bool`, *optional*, defaults to False):
|
432 |
+
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
433 |
+
"""
|
434 |
+
|
435 |
+
def __init__(
|
436 |
+
self,
|
437 |
+
query_dim: int,
|
438 |
+
cross_attention_dim: Optional[int] = None,
|
439 |
+
heads: int = 8,
|
440 |
+
dim_head: int = 64,
|
441 |
+
dropout: float = 0.0,
|
442 |
+
bias=False,
|
443 |
+
):
|
444 |
+
super().__init__()
|
445 |
+
inner_dim = dim_head * heads
|
446 |
+
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
447 |
+
|
448 |
+
self.scale = dim_head**-0.5
|
449 |
+
self.heads = heads
|
450 |
+
# for slice_size > 0 the attention score computation
|
451 |
+
# is split across the batch axis to save memory
|
452 |
+
# You can set slice_size with `set_attention_slice`
|
453 |
+
self._slice_size = None
|
454 |
+
self._use_memory_efficient_attention_xformers = False
|
455 |
+
|
456 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
|
457 |
+
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
|
458 |
+
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
|
459 |
+
|
460 |
+
self.to_out = nn.ModuleList([])
|
461 |
+
self.to_out.append(nn.Linear(inner_dim, query_dim))
|
462 |
+
self.to_out.append(nn.Dropout(dropout))
|
463 |
+
|
464 |
+
def reshape_heads_to_batch_dim(self, tensor):
|
465 |
+
batch_size, seq_len, dim = tensor.shape
|
466 |
+
head_size = self.heads
|
467 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
468 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
469 |
+
return tensor
|
470 |
+
|
471 |
+
def reshape_batch_dim_to_heads(self, tensor):
|
472 |
+
batch_size, seq_len, dim = tensor.shape
|
473 |
+
head_size = self.heads
|
474 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
475 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
476 |
+
return tensor
|
477 |
+
|
478 |
+
def forward(self, hidden_states, context=None, attn_map=None, use_prev_key=False, prev_key=None, mask=None, attn_shift=False, obj_ids=None, relationship=None):
|
479 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
480 |
+
|
481 |
+
query = self.to_q(hidden_states)
|
482 |
+
context = context if context is not None else hidden_states
|
483 |
+
key = self.to_k(context)
|
484 |
+
value = self.to_v(context)
|
485 |
+
|
486 |
+
dim = query.shape[-1]
|
487 |
+
|
488 |
+
query = self.reshape_heads_to_batch_dim(query)
|
489 |
+
key = self.reshape_heads_to_batch_dim(key)
|
490 |
+
if use_prev_key:
|
491 |
+
key = prev_key
|
492 |
+
value = self.reshape_heads_to_batch_dim(value)
|
493 |
+
|
494 |
+
# TODO(PVP) - mask is currently never used. Remember to re-implement when used
|
495 |
+
|
496 |
+
# attention, what we cannot get enough of
|
497 |
+
if self._use_memory_efficient_attention_xformers:
|
498 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value)
|
499 |
+
else:
|
500 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
501 |
+
hidden_states, attention_probs = self._attention(query, key, value, attn_map=attn_map, attn_shift=attn_shift, obj_ids=obj_ids, relationship=relationship)
|
502 |
+
else:
|
503 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
|
504 |
+
|
505 |
+
# linear proj
|
506 |
+
hidden_states = self.to_out[0](hidden_states)
|
507 |
+
# dropout
|
508 |
+
hidden_states = self.to_out[1](hidden_states)
|
509 |
+
return hidden_states, attention_probs, key
|
510 |
+
|
511 |
+
def _attention(self, query, key, value, attn_map=None, attn_shift=False, attn_mask=None, obj_ids=None, relationship=None):
|
512 |
+
# TODO: use baddbmm for better performance
|
513 |
+
if query.device.type == "mps":
|
514 |
+
# Better performance on mps (~20-25%)
|
515 |
+
attention_scores = torch.einsum("b i d, b j d -> b i j", query, key) * self.scale
|
516 |
+
else:
|
517 |
+
attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale
|
518 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
519 |
+
# compute attention output
|
520 |
+
|
521 |
+
if query.device.type == "mps":
|
522 |
+
hidden_states = torch.einsum("b i j, b j d -> b i d", attention_probs, value)
|
523 |
+
else:
|
524 |
+
per_image_size = attention_probs.shape[0] // 2
|
525 |
+
|
526 |
+
if attn_map is not None:
|
527 |
+
|
528 |
+
print(attn_map.shape, attention_probs.shape)
|
529 |
+
# # hidden_states = torch.matmul(attention_probs, value)
|
530 |
+
# # print(attention_probs.shape, attn_map.shape)
|
531 |
+
# #
|
532 |
+
# b, i, j = attention_probs.shape
|
533 |
+
# H = W = int(math.sqrt(i))
|
534 |
+
# # # random_start = torch.randn(size=(b, j, i))
|
535 |
+
# # # random_start = (random_start/random_start.sum(-1).unsqueeze(-1)).permute(0, 2, 1).cuda()
|
536 |
+
# # # attention_probs[per_image_size:, :, 7:] = random_start[per_image_size:, :, 0].unsqueeze(-1)
|
537 |
+
# n = np.zeros((H, W))
|
538 |
+
# n[H//2, 1*W//4] = 1
|
539 |
+
# # n[3*H//4, 1*W//4] = 1
|
540 |
+
# # n[3*H//4, 3*W//4] = 1
|
541 |
+
#
|
542 |
+
# attention_weight_cat = torch.from_numpy(scipy.ndimage.gaussian_filter(n, sigma=H/12)).cuda().reshape(-1)
|
543 |
+
# # print(attention_probs[per_image_size:, :, :].shape, attention_weight_cat.shape )
|
544 |
+
# # attention_probs[per_image_size:, :, 4:] = attention_probs[per_image_size:, :, 4:] * attention_weight_cat.unsqueeze(-1)
|
545 |
+
# # attention_probs[per_image_size:, :, :] = attention_probs[per_image_size:, :, :]/attention_probs[per_image_size:, :, :].sum(dim=1).unsqueeze(1)
|
546 |
+
# #
|
547 |
+
# n = np.zeros((H, W))
|
548 |
+
# n[H//2, 3*W//4] = 1
|
549 |
+
# attention_weight_dog = torch.from_numpy(scipy.ndimage.gaussian_filter(n, sigma=H/12)).cuda().reshape(-1)
|
550 |
+
# #
|
551 |
+
# attention_weight_all = attention_weight_dog + attention_weight_cat
|
552 |
+
# # attention_weight_all = torch.ones(size=attention_weight_motorbike.shape)
|
553 |
+
# attention_weight_all_normalized = attention_weight_all/attention_weight_all.sum()
|
554 |
+
# # attention_probs[per_image_size:, :, 1:] = attention_weight_all_normalized.unsqueeze(-1)
|
555 |
+
# #
|
556 |
+
# attention_weight_bg = attention_weight_dog + attention_weight_cat
|
557 |
+
# # attention_weight_bg = torch.ones(size=attention_weight_motorbike.shape)
|
558 |
+
# attention_weight_all_normalized_bg = attention_weight_bg/attention_weight_bg.sum()
|
559 |
+
# attention_weight_all_normalized_bg_reverse = attention_weight_all_normalized_bg.max() - attention_weight_all_normalized_bg
|
560 |
+
# # attention_weight_all_normalized_bg_reverse = torch.ones(size=attention_weight_motorbike.shape)
|
561 |
+
# attention_weight_all_normalized_bg_reverse = attention_weight_all_normalized_bg_reverse/attention_weight_all_normalized_bg_reverse.sum()
|
562 |
+
# # attention_probs[per_image_size:, :, 0] = attention_weight_all_normalized_bg_reverse
|
563 |
+
# #
|
564 |
+
# # per_image_size = attention_probs.shape[0] // 2
|
565 |
+
#
|
566 |
+
# # attention_probs[per_image_size:] = attn_map if attn_map.shape[0] == per_image_size else attn_map[per_image_size:]
|
567 |
+
# # attention_probs_new = attention_probs.clone()
|
568 |
+
# # attention_probs[per_image_size:, :, 1] = attention_probs_new[per_image_size:, :, 3]
|
569 |
+
# # attention_probs[per_image_size:, :, 3] = attention_probs_new[per_image_size:, :, 1]
|
570 |
+
|
571 |
+
if attn_shift:
|
572 |
+
# print("???")
|
573 |
+
|
574 |
+
|
575 |
+
b, i, j = attention_probs.shape
|
576 |
+
H = W = int(math.sqrt(i))
|
577 |
+
strength = relationship['strength']
|
578 |
+
spatial_relationship = relationship['spatial_relationship']
|
579 |
+
|
580 |
+
# print(obj_ids, relationship)
|
581 |
+
|
582 |
+
|
583 |
+
##### padding token one
|
584 |
+
if relationship['padding_token']:
|
585 |
+
# print("forward with padding_token")
|
586 |
+
n = np.zeros((H, W))
|
587 |
+
padding_token_start = relationship['padding_start']
|
588 |
+
# print(relationship)
|
589 |
+
if spatial_relationship == 0:
|
590 |
+
n[H // 2, 1 * W // 4] = 1/2
|
591 |
+
n[H // 2, 3 * W // 4] = 1/2
|
592 |
+
elif spatial_relationship == 1:
|
593 |
+
n[H // 2, 1 * W // 4] = 1/2
|
594 |
+
n[H // 2, 3 * W // 4] = 1/2
|
595 |
+
elif spatial_relationship == 2:
|
596 |
+
n[1 * H // 4, W // 2] = 1/2
|
597 |
+
n[3 * H // 4, W // 2] = 1/2
|
598 |
+
elif spatial_relationship == 3:
|
599 |
+
n[1 * H // 4, W // 2] = 1/2
|
600 |
+
n[3 * H // 4, W // 2] = 1/2
|
601 |
+
attention_weight_obj_a = torch.from_numpy(
|
602 |
+
scipy.ndimage.gaussian_filter(n, sigma=H / 8)).cuda().reshape(-1)
|
603 |
+
# print((attention_weight_obj_a / attention_weight_obj_a.sum()).shape)
|
604 |
+
attention_weight_obj_a_normalized = torch.tile(
|
605 |
+
(attention_weight_obj_a / attention_weight_obj_a.sum()).unsqueeze(0).unsqueeze(-1), (b // 2, 1, j-padding_token_start))
|
606 |
+
# print(attention_weight_obj_a_normalized.shape)
|
607 |
+
|
608 |
+
word_sum = torch.tile(attention_probs[per_image_size:, :, padding_token_start:].sum(dim=-2).unsqueeze(-2), (1, i, 1))
|
609 |
+
attention_probs[per_image_size:, :, padding_token_start:] = (1-strength)*attention_probs[per_image_size:, :, padding_token_start:] + strength * attention_weight_obj_a_normalized * word_sum
|
610 |
+
|
611 |
+
### start token
|
612 |
+
n = np.zeros((H, W))
|
613 |
+
# print("use start token", relationship)
|
614 |
+
if spatial_relationship == 0:
|
615 |
+
n[H // 2, 1 * W // 4] = 1/2
|
616 |
+
n[H // 2, 3 * W // 4] = 1/2
|
617 |
+
elif spatial_relationship == 1:
|
618 |
+
n[H // 2, 1 * W // 4] = 1/2
|
619 |
+
n[H // 2, 3 * W // 4] = 1/2
|
620 |
+
elif spatial_relationship == 2:
|
621 |
+
n[1 * H // 4, W // 2] = 1/2
|
622 |
+
n[3 * H // 4, W // 2] = 1/2
|
623 |
+
elif spatial_relationship == 3:
|
624 |
+
n[1 * H // 4, W // 2] = 1/2
|
625 |
+
n[3 * H // 4, W // 2] = 1/2
|
626 |
+
|
627 |
+
|
628 |
+
attention_weight_obj_a = torch.from_numpy(
|
629 |
+
scipy.ndimage.gaussian_filter(n, sigma=H / 8)).cuda().reshape(-1)
|
630 |
+
attention_weight_obj_a = 1 - attention_weight_obj_a
|
631 |
+
# print((attention_weight_obj_a / attention_weight_obj_a.sum()).shape)
|
632 |
+
attention_weight_obj_a_normalized = torch.tile(
|
633 |
+
(attention_weight_obj_a / attention_weight_obj_a.sum()).unsqueeze(0),
|
634 |
+
(b // 2, 1))
|
635 |
+
# print(attention_weight_obj_a_normalized.shape)
|
636 |
+
|
637 |
+
word_sum = attention_probs[per_image_size:, :, 0].sum(dim=-1)
|
638 |
+
# print("before the adding", attention_probs[per_image_size:, :, 0].sum(dim=-1)[0])
|
639 |
+
# print("adding noise" , (attention_weight_obj_a_normalized * word_sum.unsqueeze(-1)).sum(dim=-1)[0])
|
640 |
+
# print("before the adding" ,attention_probs[per_image_size:, :, 0].sum(dim=-1)[0], )
|
641 |
+
|
642 |
+
attention_probs[per_image_size:, :, 0] = (1 - strength) * attention_probs[per_image_size:, :, 0] + strength * attention_weight_obj_a_normalized * word_sum.unsqueeze(-1)
|
643 |
+
# print("after the adding", attention_probs[per_image_size:, :, 0].sum(dim=-1)[0])
|
644 |
+
### end
|
645 |
+
|
646 |
+
|
647 |
+
### one token
|
648 |
+
#
|
649 |
+
# n = np.zeros((H, W))
|
650 |
+
# n[3 * H // 4, 1 * W // 4] = 1
|
651 |
+
# obj_a_ids = 5
|
652 |
+
# # obj_b_ids = obj_ids[1]
|
653 |
+
# attention_weight_obj_a = torch.from_numpy(
|
654 |
+
# scipy.ndimage.gaussian_filter(n, sigma=H / 8)).cuda().reshape(-1)
|
655 |
+
# # print((attention_weight_obj_a / attention_weight_obj_a.sum()).shape)
|
656 |
+
# attention_weight_obj_a_normalized = torch.tile(
|
657 |
+
# (attention_weight_obj_a / attention_weight_obj_a.sum()).unsqueeze(0),
|
658 |
+
# (b // 2, 1))
|
659 |
+
# # print(attention_weight_obj_a_normalized.shape)
|
660 |
+
# word_sum = attention_probs[per_image_size:, :, obj_a_ids].sum(dim=-1)
|
661 |
+
# print(word_sum.shape, attention_weight_obj_a_normalized.shape)
|
662 |
+
#
|
663 |
+
# attention_probs[per_image_size:, :, obj_a_ids] = (1 - strength) * attention_probs[per_image_size:, :,
|
664 |
+
# obj_a_ids] + strength * attention_weight_obj_a_normalized * word_sum.unsqueeze(-1)
|
665 |
+
|
666 |
+
|
667 |
+
###### Normal one
|
668 |
+
obj_a_ids = obj_ids[0]
|
669 |
+
obj_b_ids = obj_ids[1]
|
670 |
+
# obj_a_ids = [2]
|
671 |
+
# obj_b_ids = [8]
|
672 |
+
strength = relationship['strength']
|
673 |
+
spatial_relationship = relationship['spatial_relationship']
|
674 |
+
# print("use_normal_one")
|
675 |
+
for obj_a_id in obj_a_ids:
|
676 |
+
n = np.zeros((H, W))
|
677 |
+
if spatial_relationship == 0:
|
678 |
+
n[H // 2, 1 * W // 4] = 1
|
679 |
+
elif spatial_relationship == 1:
|
680 |
+
n[H // 2, 3 * W // 4] = 1
|
681 |
+
elif spatial_relationship == 2:
|
682 |
+
n[1 * H // 4, W // 2] = 1
|
683 |
+
elif spatial_relationship == 3:
|
684 |
+
n[3 * H // 4, W // 2] = 1
|
685 |
+
|
686 |
+
attention_weight_obj_a = torch.from_numpy(
|
687 |
+
scipy.ndimage.gaussian_filter(n, sigma=H / 8)).cuda().reshape(-1)
|
688 |
+
attention_weight_obj_a_normalized = torch.tile(
|
689 |
+
(attention_weight_obj_a / attention_weight_obj_a.sum()).unsqueeze(0), (b // 2, 1))
|
690 |
+
|
691 |
+
word_sum = attention_probs[per_image_size:, :, obj_a_id].sum(dim=-1)
|
692 |
+
attention_probs[per_image_size:, :, obj_a_id] = (1-strength)*attention_probs[per_image_size:, :, obj_a_id] + strength * attention_weight_obj_a_normalized * word_sum.unsqueeze(-1)
|
693 |
+
|
694 |
+
for obj_id in obj_b_ids:
|
695 |
+
n = np.zeros((H, W))
|
696 |
+
if spatial_relationship == 0:
|
697 |
+
n[H // 2, 3 * W // 4] = 1
|
698 |
+
elif spatial_relationship == 1:
|
699 |
+
n[H // 2, 1 * W // 4] = 1
|
700 |
+
elif spatial_relationship == 2:
|
701 |
+
n[3 * H // 4, W // 2] = 1
|
702 |
+
elif spatial_relationship == 3:
|
703 |
+
n[1 * H // 4, W // 2] = 1
|
704 |
+
|
705 |
+
attention_weight_obj = torch.from_numpy(
|
706 |
+
scipy.ndimage.gaussian_filter(n, sigma=H / 8)).cuda().reshape(-1)
|
707 |
+
attention_weight_obj_normalized = torch.tile(
|
708 |
+
(attention_weight_obj / attention_weight_obj.sum()).unsqueeze(0), (b // 2, 1))
|
709 |
+
|
710 |
+
word_sum = attention_probs[per_image_size:, :, obj_id].sum(dim=-1)
|
711 |
+
attention_probs[per_image_size:, :, obj_id] = (1-strength) * attention_probs[per_image_size:, :,obj_id] + strength * attention_weight_obj_normalized * word_sum.unsqueeze(-1)
|
712 |
+
|
713 |
+
|
714 |
+
|
715 |
+
|
716 |
+
# n = np.zeros((H, W))
|
717 |
+
|
718 |
+
|
719 |
+
# if relationship =
|
720 |
+
# n[H//2, 1*W//4] = 1
|
721 |
+
|
722 |
+
# attention_weight_dog = torch.from_numpy(scipy.ndimage.gaussian_filter(n, sigma=H/8)).cuda().reshape(-1)
|
723 |
+
# attention_weight_dog_normalized = torch.tile((attention_weight_dog/attention_weight_dog.sum()).unsqueeze(0),(b//2, 1))
|
724 |
+
# word_sum = attention_probs[per_image_size:, :, 8].sum(dim=-1)
|
725 |
+
# attention_probs[per_image_size:, :, 8] = 0 * attention_probs[per_image_size:, :, 1] + 1 * attention_weight_dog_normalized * word_sum.unsqueeze(-1)
|
726 |
+
|
727 |
+
|
728 |
+
# attention_weight_motorbike = torch.from_numpy(scipy.ndimage.gaussian_filter(n, sigma=H/12)).cuda().reshape(-1)
|
729 |
+
# attention_weight_motorbike_normalized = torch.tile(attention_weight_motorbike/attention_weight_motorbike.sum().unsqueeze(0), (b//2, 1))
|
730 |
+
#
|
731 |
+
#
|
732 |
+
# # print('attention_probs', attention_probs[per_image_size:, :, 3].sum(dim=-1))
|
733 |
+
# print(attention_weight_motorbike_normalized.shape, attention_probs[per_image_size:, :, 3].sum(dim=-1))
|
734 |
+
|
735 |
+
# attention_probs[per_image_size:, :, 3] = 0.9 * attention_weight_motorbike_normalized * attention_probs[per_image_size:, :, 3].sum(dim=-1).unsqueeze(-1) + 0.1 * attention_probs[per_image_size:, :, 3]
|
736 |
+
|
737 |
+
# attention_weight_all = attention_weight_motorbike + attention_weight_cat
|
738 |
+
# attention_weight_all_normalized = attention_weight_all/attention_weight_all.sum()
|
739 |
+
# attention_probs[per_image_size:, :, 4:] = attention_weight_all_normalized.unsqueeze(-1)
|
740 |
+
|
741 |
+
|
742 |
+
|
743 |
+
# b, i, j = attention_probs.shape
|
744 |
+
#
|
745 |
+
# H = W = int(math.sqrt(i))
|
746 |
+
# attention_probs_reshape = attention_probs.permute(0, 2, 1).reshape(b, j, H, W)
|
747 |
+
# if attn_mask is None:
|
748 |
+
# attn_mask = torch.zeros(size=attention_probs_reshape.shape).cuda()
|
749 |
+
# attn_mask[:, :, H//2:, W//2:] = 1
|
750 |
+
# # print(attention_probs_reshape.is_cuda, attention_probs_reshape.get_device())
|
751 |
+
# # attn_mask.cuda()
|
752 |
+
# attention_probs_reshape = attention_probs_reshape * attn_mask
|
753 |
+
# else:
|
754 |
+
# attn_mask.cuda()
|
755 |
+
# attention_probs_reshape = attention_probs_reshape * attn_mask
|
756 |
+
# attention_probs_reshape = attention_probs_reshape.reshape(b, j, i)
|
757 |
+
# attention_probs_reshape = attention_probs_reshape/(attention_probs_reshape.sum(dim=-1).unsqueeze(-1))
|
758 |
+
# attention_probs[per_image_size:] = attention_probs_reshape.permute(0, 2, 1)[per_image_size:]
|
759 |
+
# if attn_shift:
|
760 |
+
# b, i, j = attention_probs.shape
|
761 |
+
# H = W = int(math.sqrt(i))
|
762 |
+
# attention_map_hw = attention_probs.permute(0, 2, 1).reshape(b, j, H, W)
|
763 |
+
# # print("attention_map_hw", attention_map_hw.shape)
|
764 |
+
# attention_map_hw_pad = F.pad(attention_map_hw, (W//2, W//2), "constant", 0)
|
765 |
+
# # print("attention_map_hw_pad", attention_map_hw_pad.shape)
|
766 |
+
# attention_map_hw_pad = torch.roll(attention_map_hw_pad, W//4, -1)
|
767 |
+
# attention_map_hw_pad_crop = attention_map_hw_pad[:, :, :, W//2:W//2 + W].reshape(b, j, i)
|
768 |
+
# attention_map_flatten_pad_crop_sum = attention_map_hw_pad_crop.sum(dim=-1)
|
769 |
+
# attention_map_hw_pad_crop = (attention_map_hw_pad_crop/attention_map_flatten_pad_crop_sum.unsqueeze(-1)).permute(0, 2, 1)
|
770 |
+
# # attention_map_hw_pad_crop = attention_map_hw_pad_crop.reshape(b, j, i).permute(0, 2, 1)
|
771 |
+
# # attention_map_hw_pad_crop_sum = attention_map_hw_pad_crop.sum(dim=-2)
|
772 |
+
# # print(attention_map_hw_pad_crop.min())
|
773 |
+
# # print("attention_map_hw_pad_crop", attention_map_hw_pad_crop.shape)
|
774 |
+
# # attention_probs[per_image_size:, :, (2, 6)] = attention_map_hw_pad_crop.softmax(dim=-1)[per_image_size:, :, (2, 6)]
|
775 |
+
# # attention_probs[per_image_size:, :, (2, 6)] = attention_map_hw_pad_crop[per_image_size:, :, (2, 6)]
|
776 |
+
# attention_probs[per_image_size:] = attention_map_hw_pad_crop[per_image_size:]
|
777 |
+
|
778 |
+
|
779 |
+
# if attn_blob:
|
780 |
+
# n = np.zeros((21, 21))
|
781 |
+
# n[10, 10] = 1
|
782 |
+
# k = scipy.ndimage.gaussian_filter(n, sigma=3)
|
783 |
+
# else:
|
784 |
+
# # print(attention_probs.shape)
|
785 |
+
# hidden_states = torch.matmul(attention_probs, value)
|
786 |
+
hidden_states = torch.matmul(attention_probs, value)
|
787 |
+
|
788 |
+
# reshape hidden_states
|
789 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
790 |
+
return hidden_states, attention_probs
|
791 |
+
|
792 |
+
def _sliced_attention(self, query, key, value, sequence_length, dim):
|
793 |
+
batch_size_attention = query.shape[0]
|
794 |
+
hidden_states = torch.zeros(
|
795 |
+
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
|
796 |
+
)
|
797 |
+
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
|
798 |
+
for i in range(hidden_states.shape[0] // slice_size):
|
799 |
+
start_idx = i * slice_size
|
800 |
+
end_idx = (i + 1) * slice_size
|
801 |
+
if query.device.type == "mps":
|
802 |
+
# Better performance on mps (~20-25%)
|
803 |
+
attn_slice = (
|
804 |
+
torch.einsum("b i d, b j d -> b i j", query[start_idx:end_idx], key[start_idx:end_idx])
|
805 |
+
* self.scale
|
806 |
+
)
|
807 |
+
else:
|
808 |
+
attn_slice = (
|
809 |
+
torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale
|
810 |
+
) # TODO: use baddbmm for better performance
|
811 |
+
attn_slice = attn_slice.softmax(dim=-1)
|
812 |
+
if query.device.type == "mps":
|
813 |
+
attn_slice = torch.einsum("b i j, b j d -> b i d", attn_slice, value[start_idx:end_idx])
|
814 |
+
else:
|
815 |
+
attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx])
|
816 |
+
|
817 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
818 |
+
|
819 |
+
# reshape hidden_states
|
820 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
821 |
+
return hidden_states
|
822 |
+
|
823 |
+
def _memory_efficient_attention_xformers(self, query, key, value):
|
824 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=None)
|
825 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
826 |
+
return hidden_states
|
827 |
+
|
828 |
+
|
829 |
+
class FeedForward(nn.Module):
|
830 |
+
r"""
|
831 |
+
A feed-forward layer.
|
832 |
+
|
833 |
+
Parameters:
|
834 |
+
dim (`int`): The number of channels in the input.
|
835 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
836 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
837 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
838 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
839 |
+
"""
|
840 |
+
|
841 |
+
def __init__(
|
842 |
+
self,
|
843 |
+
dim: int,
|
844 |
+
dim_out: Optional[int] = None,
|
845 |
+
mult: int = 4,
|
846 |
+
dropout: float = 0.0,
|
847 |
+
activation_fn: str = "geglu",
|
848 |
+
):
|
849 |
+
super().__init__()
|
850 |
+
inner_dim = int(dim * mult)
|
851 |
+
dim_out = dim_out if dim_out is not None else dim
|
852 |
+
|
853 |
+
if activation_fn == "geglu":
|
854 |
+
geglu = GEGLU(dim, inner_dim)
|
855 |
+
elif activation_fn == "geglu-approximate":
|
856 |
+
geglu = ApproximateGELU(dim, inner_dim)
|
857 |
+
|
858 |
+
self.net = nn.ModuleList([])
|
859 |
+
# project in
|
860 |
+
self.net.append(geglu)
|
861 |
+
# project dropout
|
862 |
+
self.net.append(nn.Dropout(dropout))
|
863 |
+
# project out
|
864 |
+
self.net.append(nn.Linear(inner_dim, dim_out))
|
865 |
+
|
866 |
+
def forward(self, hidden_states):
|
867 |
+
for module in self.net:
|
868 |
+
hidden_states = module(hidden_states)
|
869 |
+
return hidden_states
|
870 |
+
|
871 |
+
|
872 |
+
# feedforward
|
873 |
+
class GEGLU(nn.Module):
|
874 |
+
r"""
|
875 |
+
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
876 |
+
|
877 |
+
Parameters:
|
878 |
+
dim_in (`int`): The number of channels in the input.
|
879 |
+
dim_out (`int`): The number of channels in the output.
|
880 |
+
"""
|
881 |
+
|
882 |
+
def __init__(self, dim_in: int, dim_out: int):
|
883 |
+
super().__init__()
|
884 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
885 |
+
|
886 |
+
def gelu(self, gate):
|
887 |
+
if gate.device.type != "mps":
|
888 |
+
return F.gelu(gate)
|
889 |
+
# mps: gelu is not implemented for float16
|
890 |
+
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
|
891 |
+
|
892 |
+
def forward(self, hidden_states):
|
893 |
+
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
|
894 |
+
return hidden_states * self.gelu(gate)
|
895 |
+
|
896 |
+
|
897 |
+
class ApproximateGELU(nn.Module):
|
898 |
+
"""
|
899 |
+
The approximate form of Gaussian Error Linear Unit (GELU)
|
900 |
+
|
901 |
+
For more details, see section 2: https://arxiv.org/abs/1606.08415
|
902 |
+
"""
|
903 |
+
|
904 |
+
def __init__(self, dim_in: int, dim_out: int):
|
905 |
+
super().__init__()
|
906 |
+
self.proj = nn.Linear(dim_in, dim_out)
|
907 |
+
|
908 |
+
def forward(self, x):
|
909 |
+
x = self.proj(x)
|
910 |
+
return x * torch.sigmoid(1.702 * x)
|
911 |
+
|
912 |
+
|
913 |
+
class AdaLayerNorm(nn.Module):
|
914 |
+
"""
|
915 |
+
Norm layer modified to incorporate timestep embeddings.
|
916 |
+
"""
|
917 |
+
|
918 |
+
def __init__(self, embedding_dim, num_embeddings):
|
919 |
+
super().__init__()
|
920 |
+
self.emb = nn.Embedding(num_embeddings, embedding_dim)
|
921 |
+
self.silu = nn.SiLU()
|
922 |
+
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
|
923 |
+
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
|
924 |
+
|
925 |
+
def forward(self, x, timestep):
|
926 |
+
emb = self.linear(self.silu(self.emb(timestep)))
|
927 |
+
scale, shift = torch.chunk(emb, 2)
|
928 |
+
x = self.norm(x) * (1 + scale) + shift
|
929 |
+
return x
|
my_model/unet_2d_blocks.py
ADDED
@@ -0,0 +1,1612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
|
18 |
+
from .attention import AttentionBlock, Transformer2DModel
|
19 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
|
20 |
+
|
21 |
+
|
22 |
+
def get_down_block(
|
23 |
+
down_block_type,
|
24 |
+
num_layers,
|
25 |
+
in_channels,
|
26 |
+
out_channels,
|
27 |
+
temb_channels,
|
28 |
+
add_downsample,
|
29 |
+
resnet_eps,
|
30 |
+
resnet_act_fn,
|
31 |
+
attn_num_head_channels,
|
32 |
+
resnet_groups=None,
|
33 |
+
cross_attention_dim=None,
|
34 |
+
downsample_padding=None,
|
35 |
+
):
|
36 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
37 |
+
if down_block_type == "DownBlock2D":
|
38 |
+
return DownBlock2D(
|
39 |
+
num_layers=num_layers,
|
40 |
+
in_channels=in_channels,
|
41 |
+
out_channels=out_channels,
|
42 |
+
temb_channels=temb_channels,
|
43 |
+
add_downsample=add_downsample,
|
44 |
+
resnet_eps=resnet_eps,
|
45 |
+
resnet_act_fn=resnet_act_fn,
|
46 |
+
resnet_groups=resnet_groups,
|
47 |
+
downsample_padding=downsample_padding,
|
48 |
+
)
|
49 |
+
elif down_block_type == "AttnDownBlock2D":
|
50 |
+
return AttnDownBlock2D(
|
51 |
+
num_layers=num_layers,
|
52 |
+
in_channels=in_channels,
|
53 |
+
out_channels=out_channels,
|
54 |
+
temb_channels=temb_channels,
|
55 |
+
add_downsample=add_downsample,
|
56 |
+
resnet_eps=resnet_eps,
|
57 |
+
resnet_act_fn=resnet_act_fn,
|
58 |
+
resnet_groups=resnet_groups,
|
59 |
+
downsample_padding=downsample_padding,
|
60 |
+
attn_num_head_channels=attn_num_head_channels,
|
61 |
+
)
|
62 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
63 |
+
if cross_attention_dim is None:
|
64 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
65 |
+
return CrossAttnDownBlock2D(
|
66 |
+
num_layers=num_layers,
|
67 |
+
in_channels=in_channels,
|
68 |
+
out_channels=out_channels,
|
69 |
+
temb_channels=temb_channels,
|
70 |
+
add_downsample=add_downsample,
|
71 |
+
resnet_eps=resnet_eps,
|
72 |
+
resnet_act_fn=resnet_act_fn,
|
73 |
+
resnet_groups=resnet_groups,
|
74 |
+
downsample_padding=downsample_padding,
|
75 |
+
cross_attention_dim=cross_attention_dim,
|
76 |
+
attn_num_head_channels=attn_num_head_channels,
|
77 |
+
)
|
78 |
+
elif down_block_type == "SkipDownBlock2D":
|
79 |
+
return SkipDownBlock2D(
|
80 |
+
num_layers=num_layers,
|
81 |
+
in_channels=in_channels,
|
82 |
+
out_channels=out_channels,
|
83 |
+
temb_channels=temb_channels,
|
84 |
+
add_downsample=add_downsample,
|
85 |
+
resnet_eps=resnet_eps,
|
86 |
+
resnet_act_fn=resnet_act_fn,
|
87 |
+
downsample_padding=downsample_padding,
|
88 |
+
)
|
89 |
+
elif down_block_type == "AttnSkipDownBlock2D":
|
90 |
+
return AttnSkipDownBlock2D(
|
91 |
+
num_layers=num_layers,
|
92 |
+
in_channels=in_channels,
|
93 |
+
out_channels=out_channels,
|
94 |
+
temb_channels=temb_channels,
|
95 |
+
add_downsample=add_downsample,
|
96 |
+
resnet_eps=resnet_eps,
|
97 |
+
resnet_act_fn=resnet_act_fn,
|
98 |
+
downsample_padding=downsample_padding,
|
99 |
+
attn_num_head_channels=attn_num_head_channels,
|
100 |
+
)
|
101 |
+
elif down_block_type == "DownEncoderBlock2D":
|
102 |
+
return DownEncoderBlock2D(
|
103 |
+
num_layers=num_layers,
|
104 |
+
in_channels=in_channels,
|
105 |
+
out_channels=out_channels,
|
106 |
+
add_downsample=add_downsample,
|
107 |
+
resnet_eps=resnet_eps,
|
108 |
+
resnet_act_fn=resnet_act_fn,
|
109 |
+
resnet_groups=resnet_groups,
|
110 |
+
downsample_padding=downsample_padding,
|
111 |
+
)
|
112 |
+
elif down_block_type == "AttnDownEncoderBlock2D":
|
113 |
+
return AttnDownEncoderBlock2D(
|
114 |
+
num_layers=num_layers,
|
115 |
+
in_channels=in_channels,
|
116 |
+
out_channels=out_channels,
|
117 |
+
add_downsample=add_downsample,
|
118 |
+
resnet_eps=resnet_eps,
|
119 |
+
resnet_act_fn=resnet_act_fn,
|
120 |
+
resnet_groups=resnet_groups,
|
121 |
+
downsample_padding=downsample_padding,
|
122 |
+
attn_num_head_channels=attn_num_head_channels,
|
123 |
+
)
|
124 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
125 |
+
|
126 |
+
|
127 |
+
def get_up_block(
|
128 |
+
up_block_type,
|
129 |
+
num_layers,
|
130 |
+
in_channels,
|
131 |
+
out_channels,
|
132 |
+
prev_output_channel,
|
133 |
+
temb_channels,
|
134 |
+
add_upsample,
|
135 |
+
resnet_eps,
|
136 |
+
resnet_act_fn,
|
137 |
+
attn_num_head_channels,
|
138 |
+
resnet_groups=None,
|
139 |
+
cross_attention_dim=None,
|
140 |
+
):
|
141 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
142 |
+
if up_block_type == "UpBlock2D":
|
143 |
+
return UpBlock2D(
|
144 |
+
num_layers=num_layers,
|
145 |
+
in_channels=in_channels,
|
146 |
+
out_channels=out_channels,
|
147 |
+
prev_output_channel=prev_output_channel,
|
148 |
+
temb_channels=temb_channels,
|
149 |
+
add_upsample=add_upsample,
|
150 |
+
resnet_eps=resnet_eps,
|
151 |
+
resnet_act_fn=resnet_act_fn,
|
152 |
+
resnet_groups=resnet_groups,
|
153 |
+
)
|
154 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
155 |
+
if cross_attention_dim is None:
|
156 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
157 |
+
return CrossAttnUpBlock2D(
|
158 |
+
num_layers=num_layers,
|
159 |
+
in_channels=in_channels,
|
160 |
+
out_channels=out_channels,
|
161 |
+
prev_output_channel=prev_output_channel,
|
162 |
+
temb_channels=temb_channels,
|
163 |
+
add_upsample=add_upsample,
|
164 |
+
resnet_eps=resnet_eps,
|
165 |
+
resnet_act_fn=resnet_act_fn,
|
166 |
+
resnet_groups=resnet_groups,
|
167 |
+
cross_attention_dim=cross_attention_dim,
|
168 |
+
attn_num_head_channels=attn_num_head_channels,
|
169 |
+
)
|
170 |
+
elif up_block_type == "AttnUpBlock2D":
|
171 |
+
return AttnUpBlock2D(
|
172 |
+
num_layers=num_layers,
|
173 |
+
in_channels=in_channels,
|
174 |
+
out_channels=out_channels,
|
175 |
+
prev_output_channel=prev_output_channel,
|
176 |
+
temb_channels=temb_channels,
|
177 |
+
add_upsample=add_upsample,
|
178 |
+
resnet_eps=resnet_eps,
|
179 |
+
resnet_act_fn=resnet_act_fn,
|
180 |
+
resnet_groups=resnet_groups,
|
181 |
+
attn_num_head_channels=attn_num_head_channels,
|
182 |
+
)
|
183 |
+
elif up_block_type == "SkipUpBlock2D":
|
184 |
+
return SkipUpBlock2D(
|
185 |
+
num_layers=num_layers,
|
186 |
+
in_channels=in_channels,
|
187 |
+
out_channels=out_channels,
|
188 |
+
prev_output_channel=prev_output_channel,
|
189 |
+
temb_channels=temb_channels,
|
190 |
+
add_upsample=add_upsample,
|
191 |
+
resnet_eps=resnet_eps,
|
192 |
+
resnet_act_fn=resnet_act_fn,
|
193 |
+
)
|
194 |
+
elif up_block_type == "AttnSkipUpBlock2D":
|
195 |
+
return AttnSkipUpBlock2D(
|
196 |
+
num_layers=num_layers,
|
197 |
+
in_channels=in_channels,
|
198 |
+
out_channels=out_channels,
|
199 |
+
prev_output_channel=prev_output_channel,
|
200 |
+
temb_channels=temb_channels,
|
201 |
+
add_upsample=add_upsample,
|
202 |
+
resnet_eps=resnet_eps,
|
203 |
+
resnet_act_fn=resnet_act_fn,
|
204 |
+
attn_num_head_channels=attn_num_head_channels,
|
205 |
+
)
|
206 |
+
elif up_block_type == "UpDecoderBlock2D":
|
207 |
+
return UpDecoderBlock2D(
|
208 |
+
num_layers=num_layers,
|
209 |
+
in_channels=in_channels,
|
210 |
+
out_channels=out_channels,
|
211 |
+
add_upsample=add_upsample,
|
212 |
+
resnet_eps=resnet_eps,
|
213 |
+
resnet_act_fn=resnet_act_fn,
|
214 |
+
resnet_groups=resnet_groups,
|
215 |
+
)
|
216 |
+
elif up_block_type == "AttnUpDecoderBlock2D":
|
217 |
+
return AttnUpDecoderBlock2D(
|
218 |
+
num_layers=num_layers,
|
219 |
+
in_channels=in_channels,
|
220 |
+
out_channels=out_channels,
|
221 |
+
add_upsample=add_upsample,
|
222 |
+
resnet_eps=resnet_eps,
|
223 |
+
resnet_act_fn=resnet_act_fn,
|
224 |
+
resnet_groups=resnet_groups,
|
225 |
+
attn_num_head_channels=attn_num_head_channels,
|
226 |
+
)
|
227 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
228 |
+
|
229 |
+
|
230 |
+
class UNetMidBlock2D(nn.Module):
|
231 |
+
def __init__(
|
232 |
+
self,
|
233 |
+
in_channels: int,
|
234 |
+
temb_channels: int,
|
235 |
+
dropout: float = 0.0,
|
236 |
+
num_layers: int = 1,
|
237 |
+
resnet_eps: float = 1e-6,
|
238 |
+
resnet_time_scale_shift: str = "default",
|
239 |
+
resnet_act_fn: str = "swish",
|
240 |
+
resnet_groups: int = 32,
|
241 |
+
resnet_pre_norm: bool = True,
|
242 |
+
attn_num_head_channels=1,
|
243 |
+
attention_type="default",
|
244 |
+
output_scale_factor=1.0,
|
245 |
+
**kwargs,
|
246 |
+
):
|
247 |
+
super().__init__()
|
248 |
+
|
249 |
+
self.attention_type = attention_type
|
250 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
251 |
+
|
252 |
+
# there is always at least one resnet
|
253 |
+
resnets = [
|
254 |
+
ResnetBlock2D(
|
255 |
+
in_channels=in_channels,
|
256 |
+
out_channels=in_channels,
|
257 |
+
temb_channels=temb_channels,
|
258 |
+
eps=resnet_eps,
|
259 |
+
groups=resnet_groups,
|
260 |
+
dropout=dropout,
|
261 |
+
time_embedding_norm=resnet_time_scale_shift,
|
262 |
+
non_linearity=resnet_act_fn,
|
263 |
+
output_scale_factor=output_scale_factor,
|
264 |
+
pre_norm=resnet_pre_norm,
|
265 |
+
)
|
266 |
+
]
|
267 |
+
attentions = []
|
268 |
+
|
269 |
+
for _ in range(num_layers):
|
270 |
+
attentions.append(
|
271 |
+
AttentionBlock(
|
272 |
+
in_channels,
|
273 |
+
num_head_channels=attn_num_head_channels,
|
274 |
+
rescale_output_factor=output_scale_factor,
|
275 |
+
eps=resnet_eps,
|
276 |
+
norm_num_groups=resnet_groups,
|
277 |
+
)
|
278 |
+
)
|
279 |
+
resnets.append(
|
280 |
+
ResnetBlock2D(
|
281 |
+
in_channels=in_channels,
|
282 |
+
out_channels=in_channels,
|
283 |
+
temb_channels=temb_channels,
|
284 |
+
eps=resnet_eps,
|
285 |
+
groups=resnet_groups,
|
286 |
+
dropout=dropout,
|
287 |
+
time_embedding_norm=resnet_time_scale_shift,
|
288 |
+
non_linearity=resnet_act_fn,
|
289 |
+
output_scale_factor=output_scale_factor,
|
290 |
+
pre_norm=resnet_pre_norm,
|
291 |
+
)
|
292 |
+
)
|
293 |
+
|
294 |
+
self.attentions = nn.ModuleList(attentions)
|
295 |
+
self.resnets = nn.ModuleList(resnets)
|
296 |
+
|
297 |
+
def forward(self, hidden_states, temb=None, encoder_states=None):
|
298 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
299 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
300 |
+
if self.attention_type == "default":
|
301 |
+
hidden_states = attn(hidden_states)
|
302 |
+
else:
|
303 |
+
hidden_states = attn(hidden_states, encoder_states)
|
304 |
+
hidden_states = resnet(hidden_states, temb)
|
305 |
+
|
306 |
+
return hidden_states
|
307 |
+
|
308 |
+
|
309 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
310 |
+
def __init__(
|
311 |
+
self,
|
312 |
+
in_channels: int,
|
313 |
+
temb_channels: int,
|
314 |
+
dropout: float = 0.0,
|
315 |
+
num_layers: int = 1,
|
316 |
+
resnet_eps: float = 1e-6,
|
317 |
+
resnet_time_scale_shift: str = "default",
|
318 |
+
resnet_act_fn: str = "swish",
|
319 |
+
resnet_groups: int = 32,
|
320 |
+
resnet_pre_norm: bool = True,
|
321 |
+
attn_num_head_channels=1,
|
322 |
+
attention_type="default",
|
323 |
+
output_scale_factor=1.0,
|
324 |
+
cross_attention_dim=1280,
|
325 |
+
**kwargs,
|
326 |
+
):
|
327 |
+
super().__init__()
|
328 |
+
|
329 |
+
self.attention_type = attention_type
|
330 |
+
self.attn_num_head_channels = attn_num_head_channels
|
331 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
332 |
+
|
333 |
+
# there is always at least one resnet
|
334 |
+
resnets = [
|
335 |
+
ResnetBlock2D(
|
336 |
+
in_channels=in_channels,
|
337 |
+
out_channels=in_channels,
|
338 |
+
temb_channels=temb_channels,
|
339 |
+
eps=resnet_eps,
|
340 |
+
groups=resnet_groups,
|
341 |
+
dropout=dropout,
|
342 |
+
time_embedding_norm=resnet_time_scale_shift,
|
343 |
+
non_linearity=resnet_act_fn,
|
344 |
+
output_scale_factor=output_scale_factor,
|
345 |
+
pre_norm=resnet_pre_norm,
|
346 |
+
)
|
347 |
+
]
|
348 |
+
attentions = []
|
349 |
+
|
350 |
+
for _ in range(num_layers):
|
351 |
+
attentions.append(
|
352 |
+
Transformer2DModel(
|
353 |
+
attn_num_head_channels,
|
354 |
+
in_channels // attn_num_head_channels,
|
355 |
+
in_channels=in_channels,
|
356 |
+
num_layers=1,
|
357 |
+
cross_attention_dim=cross_attention_dim,
|
358 |
+
norm_num_groups=resnet_groups,
|
359 |
+
)
|
360 |
+
)
|
361 |
+
resnets.append(
|
362 |
+
ResnetBlock2D(
|
363 |
+
in_channels=in_channels,
|
364 |
+
out_channels=in_channels,
|
365 |
+
temb_channels=temb_channels,
|
366 |
+
eps=resnet_eps,
|
367 |
+
groups=resnet_groups,
|
368 |
+
dropout=dropout,
|
369 |
+
time_embedding_norm=resnet_time_scale_shift,
|
370 |
+
non_linearity=resnet_act_fn,
|
371 |
+
output_scale_factor=output_scale_factor,
|
372 |
+
pre_norm=resnet_pre_norm,
|
373 |
+
)
|
374 |
+
)
|
375 |
+
|
376 |
+
self.attentions = nn.ModuleList(attentions)
|
377 |
+
self.resnets = nn.ModuleList(resnets)
|
378 |
+
|
379 |
+
def set_attention_slice(self, slice_size):
|
380 |
+
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
381 |
+
raise ValueError(
|
382 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
383 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
384 |
+
)
|
385 |
+
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
386 |
+
raise ValueError(
|
387 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
388 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
389 |
+
)
|
390 |
+
|
391 |
+
for attn in self.attentions:
|
392 |
+
attn._set_attention_slice(slice_size)
|
393 |
+
|
394 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
395 |
+
for attn in self.attentions:
|
396 |
+
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
397 |
+
|
398 |
+
def forward(self, hidden_states, index, temb=None, encoder_hidden_states=None, attn_map=None, attn_shift=False, attn_map_step=20, obj_ids=None, relationship=None):
|
399 |
+
device = hidden_states.get_device() if hidden_states.is_cuda else 'cpu'
|
400 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
401 |
+
mid_attn = []
|
402 |
+
mid_value = []
|
403 |
+
for layer_idx, (attn, resnet) in enumerate(zip(self.attentions, self.resnets[1:])):
|
404 |
+
hidden_states, cross_attn_prob, save_value = attn(hidden_states, encoder_hidden_states, attn_map=attn_map[layer_idx].chunk(2)[1].to(device) if index < attn_map_step else None, attn_shift=attn_shift, obj_ids=obj_ids, relationship=relationship)
|
405 |
+
hidden_states = hidden_states.sample
|
406 |
+
hidden_states = resnet(hidden_states, temb)
|
407 |
+
mid_attn.append(cross_attn_prob)
|
408 |
+
mid_value.append(save_value)
|
409 |
+
return hidden_states, mid_attn, mid_value
|
410 |
+
|
411 |
+
|
412 |
+
class AttnDownBlock2D(nn.Module):
|
413 |
+
def __init__(
|
414 |
+
self,
|
415 |
+
in_channels: int,
|
416 |
+
out_channels: int,
|
417 |
+
temb_channels: int,
|
418 |
+
dropout: float = 0.0,
|
419 |
+
num_layers: int = 1,
|
420 |
+
resnet_eps: float = 1e-6,
|
421 |
+
resnet_time_scale_shift: str = "default",
|
422 |
+
resnet_act_fn: str = "swish",
|
423 |
+
resnet_groups: int = 32,
|
424 |
+
resnet_pre_norm: bool = True,
|
425 |
+
attn_num_head_channels=1,
|
426 |
+
attention_type="default",
|
427 |
+
output_scale_factor=1.0,
|
428 |
+
downsample_padding=1,
|
429 |
+
add_downsample=True,
|
430 |
+
):
|
431 |
+
super().__init__()
|
432 |
+
resnets = []
|
433 |
+
attentions = []
|
434 |
+
|
435 |
+
self.attention_type = attention_type
|
436 |
+
|
437 |
+
for i in range(num_layers):
|
438 |
+
in_channels = in_channels if i == 0 else out_channels
|
439 |
+
resnets.append(
|
440 |
+
ResnetBlock2D(
|
441 |
+
in_channels=in_channels,
|
442 |
+
out_channels=out_channels,
|
443 |
+
temb_channels=temb_channels,
|
444 |
+
eps=resnet_eps,
|
445 |
+
groups=resnet_groups,
|
446 |
+
dropout=dropout,
|
447 |
+
time_embedding_norm=resnet_time_scale_shift,
|
448 |
+
non_linearity=resnet_act_fn,
|
449 |
+
output_scale_factor=output_scale_factor,
|
450 |
+
pre_norm=resnet_pre_norm,
|
451 |
+
)
|
452 |
+
)
|
453 |
+
attentions.append(
|
454 |
+
AttentionBlock(
|
455 |
+
out_channels,
|
456 |
+
num_head_channels=attn_num_head_channels,
|
457 |
+
rescale_output_factor=output_scale_factor,
|
458 |
+
eps=resnet_eps,
|
459 |
+
norm_num_groups=resnet_groups,
|
460 |
+
)
|
461 |
+
)
|
462 |
+
|
463 |
+
self.attentions = nn.ModuleList(attentions)
|
464 |
+
self.resnets = nn.ModuleList(resnets)
|
465 |
+
|
466 |
+
if add_downsample:
|
467 |
+
self.downsamplers = nn.ModuleList(
|
468 |
+
[
|
469 |
+
Downsample2D(
|
470 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
471 |
+
)
|
472 |
+
]
|
473 |
+
)
|
474 |
+
else:
|
475 |
+
self.downsamplers = None
|
476 |
+
|
477 |
+
def forward(self, hidden_states, temb=None):
|
478 |
+
output_states = ()
|
479 |
+
|
480 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
481 |
+
hidden_states = resnet(hidden_states, temb)
|
482 |
+
hidden_states = attn(hidden_states)
|
483 |
+
output_states += (hidden_states,)
|
484 |
+
|
485 |
+
if self.downsamplers is not None:
|
486 |
+
for downsampler in self.downsamplers:
|
487 |
+
hidden_states = downsampler(hidden_states)
|
488 |
+
|
489 |
+
output_states += (hidden_states,)
|
490 |
+
|
491 |
+
return hidden_states, output_states
|
492 |
+
|
493 |
+
|
494 |
+
class CrossAttnDownBlock2D(nn.Module):
|
495 |
+
def __init__(
|
496 |
+
self,
|
497 |
+
in_channels: int,
|
498 |
+
out_channels: int,
|
499 |
+
temb_channels: int,
|
500 |
+
dropout: float = 0.0,
|
501 |
+
num_layers: int = 1,
|
502 |
+
resnet_eps: float = 1e-6,
|
503 |
+
resnet_time_scale_shift: str = "default",
|
504 |
+
resnet_act_fn: str = "swish",
|
505 |
+
resnet_groups: int = 32,
|
506 |
+
resnet_pre_norm: bool = True,
|
507 |
+
attn_num_head_channels=1,
|
508 |
+
cross_attention_dim=1280,
|
509 |
+
attention_type="default",
|
510 |
+
output_scale_factor=1.0,
|
511 |
+
downsample_padding=1,
|
512 |
+
add_downsample=True,
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
resnets = []
|
516 |
+
attentions = []
|
517 |
+
|
518 |
+
self.attention_type = attention_type
|
519 |
+
self.attn_num_head_channels = attn_num_head_channels
|
520 |
+
|
521 |
+
for i in range(num_layers):
|
522 |
+
in_channels = in_channels if i == 0 else out_channels
|
523 |
+
resnets.append(
|
524 |
+
ResnetBlock2D(
|
525 |
+
in_channels=in_channels,
|
526 |
+
out_channels=out_channels,
|
527 |
+
temb_channels=temb_channels,
|
528 |
+
eps=resnet_eps,
|
529 |
+
groups=resnet_groups,
|
530 |
+
dropout=dropout,
|
531 |
+
time_embedding_norm=resnet_time_scale_shift,
|
532 |
+
non_linearity=resnet_act_fn,
|
533 |
+
output_scale_factor=output_scale_factor,
|
534 |
+
pre_norm=resnet_pre_norm,
|
535 |
+
)
|
536 |
+
)
|
537 |
+
attentions.append(
|
538 |
+
Transformer2DModel(
|
539 |
+
attn_num_head_channels,
|
540 |
+
out_channels // attn_num_head_channels,
|
541 |
+
in_channels=out_channels,
|
542 |
+
num_layers=1,
|
543 |
+
cross_attention_dim=cross_attention_dim,
|
544 |
+
norm_num_groups=resnet_groups,
|
545 |
+
)
|
546 |
+
)
|
547 |
+
self.attentions = nn.ModuleList(attentions)
|
548 |
+
self.resnets = nn.ModuleList(resnets)
|
549 |
+
|
550 |
+
if add_downsample:
|
551 |
+
self.downsamplers = nn.ModuleList(
|
552 |
+
[
|
553 |
+
Downsample2D(
|
554 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
555 |
+
)
|
556 |
+
]
|
557 |
+
)
|
558 |
+
else:
|
559 |
+
self.downsamplers = None
|
560 |
+
|
561 |
+
self.gradient_checkpointing = False
|
562 |
+
|
563 |
+
def set_attention_slice(self, slice_size):
|
564 |
+
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
565 |
+
raise ValueError(
|
566 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
567 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
568 |
+
)
|
569 |
+
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
570 |
+
raise ValueError(
|
571 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
572 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
573 |
+
)
|
574 |
+
|
575 |
+
for attn in self.attentions:
|
576 |
+
attn._set_attention_slice(slice_size)
|
577 |
+
|
578 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
579 |
+
for attn in self.attentions:
|
580 |
+
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
581 |
+
|
582 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attn_map=None, attn_shift=False, obj_ids=None, relationship=None):
|
583 |
+
output_states = ()
|
584 |
+
cross_attn_prob_list = []
|
585 |
+
for layer_idx, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
586 |
+
if self.training and self.gradient_checkpointing:
|
587 |
+
|
588 |
+
def create_custom_forward(module, return_dict=None):
|
589 |
+
def custom_forward(*inputs):
|
590 |
+
if return_dict is not None:
|
591 |
+
return module(*inputs, return_dict=return_dict)
|
592 |
+
else:
|
593 |
+
return module(*inputs)
|
594 |
+
|
595 |
+
return custom_forward
|
596 |
+
|
597 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
598 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
599 |
+
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
|
600 |
+
)[0]
|
601 |
+
else:
|
602 |
+
hidden_states = resnet(hidden_states, temb)
|
603 |
+
|
604 |
+
tmp_hidden_states, cross_attn_prob, save_value = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, attn_map=attn_map[layer_idx] if attn_map is not None else None, attn_shift=attn_shift, obj_ids=obj_ids, relationship=relationship)
|
605 |
+
hidden_states = tmp_hidden_states.sample
|
606 |
+
# hidden_states, cross_attn_prob = attn(hidden_states, encoder_hidden_states=encoder_hidden_states)
|
607 |
+
# hidden_states = hidden_states.sample
|
608 |
+
|
609 |
+
output_states += (hidden_states,)
|
610 |
+
cross_attn_prob_list.append(cross_attn_prob)
|
611 |
+
if self.downsamplers is not None:
|
612 |
+
for downsampler in self.downsamplers:
|
613 |
+
hidden_states = downsampler(hidden_states)
|
614 |
+
|
615 |
+
output_states += (hidden_states,)
|
616 |
+
|
617 |
+
return hidden_states, output_states, cross_attn_prob_list, save_value
|
618 |
+
|
619 |
+
|
620 |
+
class DownBlock2D(nn.Module):
|
621 |
+
def __init__(
|
622 |
+
self,
|
623 |
+
in_channels: int,
|
624 |
+
out_channels: int,
|
625 |
+
temb_channels: int,
|
626 |
+
dropout: float = 0.0,
|
627 |
+
num_layers: int = 1,
|
628 |
+
resnet_eps: float = 1e-6,
|
629 |
+
resnet_time_scale_shift: str = "default",
|
630 |
+
resnet_act_fn: str = "swish",
|
631 |
+
resnet_groups: int = 32,
|
632 |
+
resnet_pre_norm: bool = True,
|
633 |
+
output_scale_factor=1.0,
|
634 |
+
add_downsample=True,
|
635 |
+
downsample_padding=1,
|
636 |
+
):
|
637 |
+
super().__init__()
|
638 |
+
resnets = []
|
639 |
+
|
640 |
+
for i in range(num_layers):
|
641 |
+
in_channels = in_channels if i == 0 else out_channels
|
642 |
+
resnets.append(
|
643 |
+
ResnetBlock2D(
|
644 |
+
in_channels=in_channels,
|
645 |
+
out_channels=out_channels,
|
646 |
+
temb_channels=temb_channels,
|
647 |
+
eps=resnet_eps,
|
648 |
+
groups=resnet_groups,
|
649 |
+
dropout=dropout,
|
650 |
+
time_embedding_norm=resnet_time_scale_shift,
|
651 |
+
non_linearity=resnet_act_fn,
|
652 |
+
output_scale_factor=output_scale_factor,
|
653 |
+
pre_norm=resnet_pre_norm,
|
654 |
+
)
|
655 |
+
)
|
656 |
+
|
657 |
+
self.resnets = nn.ModuleList(resnets)
|
658 |
+
|
659 |
+
if add_downsample:
|
660 |
+
self.downsamplers = nn.ModuleList(
|
661 |
+
[
|
662 |
+
Downsample2D(
|
663 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
664 |
+
)
|
665 |
+
]
|
666 |
+
)
|
667 |
+
else:
|
668 |
+
self.downsamplers = None
|
669 |
+
|
670 |
+
self.gradient_checkpointing = False
|
671 |
+
|
672 |
+
def forward(self, hidden_states, temb=None):
|
673 |
+
output_states = ()
|
674 |
+
|
675 |
+
for resnet in self.resnets:
|
676 |
+
if self.training and self.gradient_checkpointing:
|
677 |
+
|
678 |
+
def create_custom_forward(module):
|
679 |
+
def custom_forward(*inputs):
|
680 |
+
return module(*inputs)
|
681 |
+
|
682 |
+
return custom_forward
|
683 |
+
|
684 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
685 |
+
else:
|
686 |
+
hidden_states = resnet(hidden_states, temb)
|
687 |
+
|
688 |
+
output_states += (hidden_states,)
|
689 |
+
|
690 |
+
if self.downsamplers is not None:
|
691 |
+
for downsampler in self.downsamplers:
|
692 |
+
hidden_states = downsampler(hidden_states)
|
693 |
+
|
694 |
+
output_states += (hidden_states,)
|
695 |
+
|
696 |
+
return hidden_states, output_states
|
697 |
+
|
698 |
+
|
699 |
+
class DownEncoderBlock2D(nn.Module):
|
700 |
+
def __init__(
|
701 |
+
self,
|
702 |
+
in_channels: int,
|
703 |
+
out_channels: int,
|
704 |
+
dropout: float = 0.0,
|
705 |
+
num_layers: int = 1,
|
706 |
+
resnet_eps: float = 1e-6,
|
707 |
+
resnet_time_scale_shift: str = "default",
|
708 |
+
resnet_act_fn: str = "swish",
|
709 |
+
resnet_groups: int = 32,
|
710 |
+
resnet_pre_norm: bool = True,
|
711 |
+
output_scale_factor=1.0,
|
712 |
+
add_downsample=True,
|
713 |
+
downsample_padding=1,
|
714 |
+
):
|
715 |
+
super().__init__()
|
716 |
+
resnets = []
|
717 |
+
|
718 |
+
for i in range(num_layers):
|
719 |
+
in_channels = in_channels if i == 0 else out_channels
|
720 |
+
resnets.append(
|
721 |
+
ResnetBlock2D(
|
722 |
+
in_channels=in_channels,
|
723 |
+
out_channels=out_channels,
|
724 |
+
temb_channels=None,
|
725 |
+
eps=resnet_eps,
|
726 |
+
groups=resnet_groups,
|
727 |
+
dropout=dropout,
|
728 |
+
time_embedding_norm=resnet_time_scale_shift,
|
729 |
+
non_linearity=resnet_act_fn,
|
730 |
+
output_scale_factor=output_scale_factor,
|
731 |
+
pre_norm=resnet_pre_norm,
|
732 |
+
)
|
733 |
+
)
|
734 |
+
|
735 |
+
self.resnets = nn.ModuleList(resnets)
|
736 |
+
|
737 |
+
if add_downsample:
|
738 |
+
self.downsamplers = nn.ModuleList(
|
739 |
+
[
|
740 |
+
Downsample2D(
|
741 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
742 |
+
)
|
743 |
+
]
|
744 |
+
)
|
745 |
+
else:
|
746 |
+
self.downsamplers = None
|
747 |
+
|
748 |
+
def forward(self, hidden_states):
|
749 |
+
for resnet in self.resnets:
|
750 |
+
hidden_states = resnet(hidden_states, temb=None)
|
751 |
+
|
752 |
+
if self.downsamplers is not None:
|
753 |
+
for downsampler in self.downsamplers:
|
754 |
+
hidden_states = downsampler(hidden_states)
|
755 |
+
|
756 |
+
return hidden_states
|
757 |
+
|
758 |
+
|
759 |
+
class AttnDownEncoderBlock2D(nn.Module):
|
760 |
+
def __init__(
|
761 |
+
self,
|
762 |
+
in_channels: int,
|
763 |
+
out_channels: int,
|
764 |
+
dropout: float = 0.0,
|
765 |
+
num_layers: int = 1,
|
766 |
+
resnet_eps: float = 1e-6,
|
767 |
+
resnet_time_scale_shift: str = "default",
|
768 |
+
resnet_act_fn: str = "swish",
|
769 |
+
resnet_groups: int = 32,
|
770 |
+
resnet_pre_norm: bool = True,
|
771 |
+
attn_num_head_channels=1,
|
772 |
+
output_scale_factor=1.0,
|
773 |
+
add_downsample=True,
|
774 |
+
downsample_padding=1,
|
775 |
+
):
|
776 |
+
super().__init__()
|
777 |
+
resnets = []
|
778 |
+
attentions = []
|
779 |
+
|
780 |
+
for i in range(num_layers):
|
781 |
+
in_channels = in_channels if i == 0 else out_channels
|
782 |
+
resnets.append(
|
783 |
+
ResnetBlock2D(
|
784 |
+
in_channels=in_channels,
|
785 |
+
out_channels=out_channels,
|
786 |
+
temb_channels=None,
|
787 |
+
eps=resnet_eps,
|
788 |
+
groups=resnet_groups,
|
789 |
+
dropout=dropout,
|
790 |
+
time_embedding_norm=resnet_time_scale_shift,
|
791 |
+
non_linearity=resnet_act_fn,
|
792 |
+
output_scale_factor=output_scale_factor,
|
793 |
+
pre_norm=resnet_pre_norm,
|
794 |
+
)
|
795 |
+
)
|
796 |
+
attentions.append(
|
797 |
+
AttentionBlock(
|
798 |
+
out_channels,
|
799 |
+
num_head_channels=attn_num_head_channels,
|
800 |
+
rescale_output_factor=output_scale_factor,
|
801 |
+
eps=resnet_eps,
|
802 |
+
norm_num_groups=resnet_groups,
|
803 |
+
)
|
804 |
+
)
|
805 |
+
|
806 |
+
self.attentions = nn.ModuleList(attentions)
|
807 |
+
self.resnets = nn.ModuleList(resnets)
|
808 |
+
|
809 |
+
if add_downsample:
|
810 |
+
self.downsamplers = nn.ModuleList(
|
811 |
+
[
|
812 |
+
Downsample2D(
|
813 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
814 |
+
)
|
815 |
+
]
|
816 |
+
)
|
817 |
+
else:
|
818 |
+
self.downsamplers = None
|
819 |
+
|
820 |
+
def forward(self, hidden_states):
|
821 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
822 |
+
hidden_states = resnet(hidden_states, temb=None)
|
823 |
+
hidden_states = attn(hidden_states)
|
824 |
+
|
825 |
+
if self.downsamplers is not None:
|
826 |
+
for downsampler in self.downsamplers:
|
827 |
+
hidden_states = downsampler(hidden_states)
|
828 |
+
|
829 |
+
return hidden_states
|
830 |
+
|
831 |
+
|
832 |
+
class AttnSkipDownBlock2D(nn.Module):
|
833 |
+
def __init__(
|
834 |
+
self,
|
835 |
+
in_channels: int,
|
836 |
+
out_channels: int,
|
837 |
+
temb_channels: int,
|
838 |
+
dropout: float = 0.0,
|
839 |
+
num_layers: int = 1,
|
840 |
+
resnet_eps: float = 1e-6,
|
841 |
+
resnet_time_scale_shift: str = "default",
|
842 |
+
resnet_act_fn: str = "swish",
|
843 |
+
resnet_pre_norm: bool = True,
|
844 |
+
attn_num_head_channels=1,
|
845 |
+
attention_type="default",
|
846 |
+
output_scale_factor=np.sqrt(2.0),
|
847 |
+
downsample_padding=1,
|
848 |
+
add_downsample=True,
|
849 |
+
):
|
850 |
+
super().__init__()
|
851 |
+
self.attentions = nn.ModuleList([])
|
852 |
+
self.resnets = nn.ModuleList([])
|
853 |
+
|
854 |
+
self.attention_type = attention_type
|
855 |
+
|
856 |
+
for i in range(num_layers):
|
857 |
+
in_channels = in_channels if i == 0 else out_channels
|
858 |
+
self.resnets.append(
|
859 |
+
ResnetBlock2D(
|
860 |
+
in_channels=in_channels,
|
861 |
+
out_channels=out_channels,
|
862 |
+
temb_channels=temb_channels,
|
863 |
+
eps=resnet_eps,
|
864 |
+
groups=min(in_channels // 4, 32),
|
865 |
+
groups_out=min(out_channels // 4, 32),
|
866 |
+
dropout=dropout,
|
867 |
+
time_embedding_norm=resnet_time_scale_shift,
|
868 |
+
non_linearity=resnet_act_fn,
|
869 |
+
output_scale_factor=output_scale_factor,
|
870 |
+
pre_norm=resnet_pre_norm,
|
871 |
+
)
|
872 |
+
)
|
873 |
+
self.attentions.append(
|
874 |
+
AttentionBlock(
|
875 |
+
out_channels,
|
876 |
+
num_head_channels=attn_num_head_channels,
|
877 |
+
rescale_output_factor=output_scale_factor,
|
878 |
+
eps=resnet_eps,
|
879 |
+
)
|
880 |
+
)
|
881 |
+
|
882 |
+
if add_downsample:
|
883 |
+
self.resnet_down = ResnetBlock2D(
|
884 |
+
in_channels=out_channels,
|
885 |
+
out_channels=out_channels,
|
886 |
+
temb_channels=temb_channels,
|
887 |
+
eps=resnet_eps,
|
888 |
+
groups=min(out_channels // 4, 32),
|
889 |
+
dropout=dropout,
|
890 |
+
time_embedding_norm=resnet_time_scale_shift,
|
891 |
+
non_linearity=resnet_act_fn,
|
892 |
+
output_scale_factor=output_scale_factor,
|
893 |
+
pre_norm=resnet_pre_norm,
|
894 |
+
use_in_shortcut=True,
|
895 |
+
down=True,
|
896 |
+
kernel="fir",
|
897 |
+
)
|
898 |
+
self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)])
|
899 |
+
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
|
900 |
+
else:
|
901 |
+
self.resnet_down = None
|
902 |
+
self.downsamplers = None
|
903 |
+
self.skip_conv = None
|
904 |
+
|
905 |
+
def forward(self, hidden_states, temb=None, skip_sample=None):
|
906 |
+
output_states = ()
|
907 |
+
|
908 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
909 |
+
hidden_states = resnet(hidden_states, temb)
|
910 |
+
hidden_states = attn(hidden_states)
|
911 |
+
output_states += (hidden_states,)
|
912 |
+
|
913 |
+
if self.downsamplers is not None:
|
914 |
+
hidden_states = self.resnet_down(hidden_states, temb)
|
915 |
+
for downsampler in self.downsamplers:
|
916 |
+
skip_sample = downsampler(skip_sample)
|
917 |
+
|
918 |
+
hidden_states = self.skip_conv(skip_sample) + hidden_states
|
919 |
+
|
920 |
+
output_states += (hidden_states,)
|
921 |
+
|
922 |
+
return hidden_states, output_states, skip_sample
|
923 |
+
|
924 |
+
|
925 |
+
class SkipDownBlock2D(nn.Module):
|
926 |
+
def __init__(
|
927 |
+
self,
|
928 |
+
in_channels: int,
|
929 |
+
out_channels: int,
|
930 |
+
temb_channels: int,
|
931 |
+
dropout: float = 0.0,
|
932 |
+
num_layers: int = 1,
|
933 |
+
resnet_eps: float = 1e-6,
|
934 |
+
resnet_time_scale_shift: str = "default",
|
935 |
+
resnet_act_fn: str = "swish",
|
936 |
+
resnet_pre_norm: bool = True,
|
937 |
+
output_scale_factor=np.sqrt(2.0),
|
938 |
+
add_downsample=True,
|
939 |
+
downsample_padding=1,
|
940 |
+
):
|
941 |
+
super().__init__()
|
942 |
+
self.resnets = nn.ModuleList([])
|
943 |
+
|
944 |
+
for i in range(num_layers):
|
945 |
+
in_channels = in_channels if i == 0 else out_channels
|
946 |
+
self.resnets.append(
|
947 |
+
ResnetBlock2D(
|
948 |
+
in_channels=in_channels,
|
949 |
+
out_channels=out_channels,
|
950 |
+
temb_channels=temb_channels,
|
951 |
+
eps=resnet_eps,
|
952 |
+
groups=min(in_channels // 4, 32),
|
953 |
+
groups_out=min(out_channels // 4, 32),
|
954 |
+
dropout=dropout,
|
955 |
+
time_embedding_norm=resnet_time_scale_shift,
|
956 |
+
non_linearity=resnet_act_fn,
|
957 |
+
output_scale_factor=output_scale_factor,
|
958 |
+
pre_norm=resnet_pre_norm,
|
959 |
+
)
|
960 |
+
)
|
961 |
+
|
962 |
+
if add_downsample:
|
963 |
+
self.resnet_down = ResnetBlock2D(
|
964 |
+
in_channels=out_channels,
|
965 |
+
out_channels=out_channels,
|
966 |
+
temb_channels=temb_channels,
|
967 |
+
eps=resnet_eps,
|
968 |
+
groups=min(out_channels // 4, 32),
|
969 |
+
dropout=dropout,
|
970 |
+
time_embedding_norm=resnet_time_scale_shift,
|
971 |
+
non_linearity=resnet_act_fn,
|
972 |
+
output_scale_factor=output_scale_factor,
|
973 |
+
pre_norm=resnet_pre_norm,
|
974 |
+
use_in_shortcut=True,
|
975 |
+
down=True,
|
976 |
+
kernel="fir",
|
977 |
+
)
|
978 |
+
self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)])
|
979 |
+
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
|
980 |
+
else:
|
981 |
+
self.resnet_down = None
|
982 |
+
self.downsamplers = None
|
983 |
+
self.skip_conv = None
|
984 |
+
|
985 |
+
def forward(self, hidden_states, temb=None, skip_sample=None):
|
986 |
+
output_states = ()
|
987 |
+
|
988 |
+
for resnet in self.resnets:
|
989 |
+
hidden_states = resnet(hidden_states, temb)
|
990 |
+
output_states += (hidden_states,)
|
991 |
+
|
992 |
+
if self.downsamplers is not None:
|
993 |
+
hidden_states = self.resnet_down(hidden_states, temb)
|
994 |
+
for downsampler in self.downsamplers:
|
995 |
+
skip_sample = downsampler(skip_sample)
|
996 |
+
|
997 |
+
hidden_states = self.skip_conv(skip_sample) + hidden_states
|
998 |
+
|
999 |
+
output_states += (hidden_states,)
|
1000 |
+
|
1001 |
+
return hidden_states, output_states, skip_sample
|
1002 |
+
|
1003 |
+
|
1004 |
+
class AttnUpBlock2D(nn.Module):
|
1005 |
+
def __init__(
|
1006 |
+
self,
|
1007 |
+
in_channels: int,
|
1008 |
+
prev_output_channel: int,
|
1009 |
+
out_channels: int,
|
1010 |
+
temb_channels: int,
|
1011 |
+
dropout: float = 0.0,
|
1012 |
+
num_layers: int = 1,
|
1013 |
+
resnet_eps: float = 1e-6,
|
1014 |
+
resnet_time_scale_shift: str = "default",
|
1015 |
+
resnet_act_fn: str = "swish",
|
1016 |
+
resnet_groups: int = 32,
|
1017 |
+
resnet_pre_norm: bool = True,
|
1018 |
+
attention_type="default",
|
1019 |
+
attn_num_head_channels=1,
|
1020 |
+
output_scale_factor=1.0,
|
1021 |
+
add_upsample=True,
|
1022 |
+
):
|
1023 |
+
super().__init__()
|
1024 |
+
resnets = []
|
1025 |
+
attentions = []
|
1026 |
+
|
1027 |
+
self.attention_type = attention_type
|
1028 |
+
|
1029 |
+
for i in range(num_layers):
|
1030 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1031 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1032 |
+
|
1033 |
+
resnets.append(
|
1034 |
+
ResnetBlock2D(
|
1035 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1036 |
+
out_channels=out_channels,
|
1037 |
+
temb_channels=temb_channels,
|
1038 |
+
eps=resnet_eps,
|
1039 |
+
groups=resnet_groups,
|
1040 |
+
dropout=dropout,
|
1041 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1042 |
+
non_linearity=resnet_act_fn,
|
1043 |
+
output_scale_factor=output_scale_factor,
|
1044 |
+
pre_norm=resnet_pre_norm,
|
1045 |
+
)
|
1046 |
+
)
|
1047 |
+
attentions.append(
|
1048 |
+
AttentionBlock(
|
1049 |
+
out_channels,
|
1050 |
+
num_head_channels=attn_num_head_channels,
|
1051 |
+
rescale_output_factor=output_scale_factor,
|
1052 |
+
eps=resnet_eps,
|
1053 |
+
norm_num_groups=resnet_groups,
|
1054 |
+
)
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
self.attentions = nn.ModuleList(attentions)
|
1058 |
+
self.resnets = nn.ModuleList(resnets)
|
1059 |
+
|
1060 |
+
if add_upsample:
|
1061 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1062 |
+
else:
|
1063 |
+
self.upsamplers = None
|
1064 |
+
|
1065 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
|
1066 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
1067 |
+
# pop res hidden states
|
1068 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1069 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1070 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1071 |
+
|
1072 |
+
hidden_states = resnet(hidden_states, temb)
|
1073 |
+
hidden_states = attn(hidden_states)
|
1074 |
+
|
1075 |
+
if self.upsamplers is not None:
|
1076 |
+
for upsampler in self.upsamplers:
|
1077 |
+
hidden_states = upsampler(hidden_states)
|
1078 |
+
|
1079 |
+
return hidden_states
|
1080 |
+
|
1081 |
+
|
1082 |
+
class CrossAttnUpBlock2D(nn.Module):
|
1083 |
+
def __init__(
|
1084 |
+
self,
|
1085 |
+
in_channels: int,
|
1086 |
+
out_channels: int,
|
1087 |
+
prev_output_channel: int,
|
1088 |
+
temb_channels: int,
|
1089 |
+
dropout: float = 0.0,
|
1090 |
+
num_layers: int = 1,
|
1091 |
+
resnet_eps: float = 1e-6,
|
1092 |
+
resnet_time_scale_shift: str = "default",
|
1093 |
+
resnet_act_fn: str = "swish",
|
1094 |
+
resnet_groups: int = 32,
|
1095 |
+
resnet_pre_norm: bool = True,
|
1096 |
+
attn_num_head_channels=1,
|
1097 |
+
cross_attention_dim=1280,
|
1098 |
+
attention_type="default",
|
1099 |
+
output_scale_factor=1.0,
|
1100 |
+
add_upsample=True,
|
1101 |
+
):
|
1102 |
+
super().__init__()
|
1103 |
+
resnets = []
|
1104 |
+
attentions = []
|
1105 |
+
|
1106 |
+
self.attention_type = attention_type
|
1107 |
+
self.attn_num_head_channels = attn_num_head_channels
|
1108 |
+
|
1109 |
+
for i in range(num_layers):
|
1110 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1111 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1112 |
+
|
1113 |
+
resnets.append(
|
1114 |
+
ResnetBlock2D(
|
1115 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1116 |
+
out_channels=out_channels,
|
1117 |
+
temb_channels=temb_channels,
|
1118 |
+
eps=resnet_eps,
|
1119 |
+
groups=resnet_groups,
|
1120 |
+
dropout=dropout,
|
1121 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1122 |
+
non_linearity=resnet_act_fn,
|
1123 |
+
output_scale_factor=output_scale_factor,
|
1124 |
+
pre_norm=resnet_pre_norm,
|
1125 |
+
)
|
1126 |
+
)
|
1127 |
+
attentions.append(
|
1128 |
+
Transformer2DModel(
|
1129 |
+
attn_num_head_channels,
|
1130 |
+
out_channels // attn_num_head_channels,
|
1131 |
+
in_channels=out_channels,
|
1132 |
+
num_layers=1,
|
1133 |
+
cross_attention_dim=cross_attention_dim,
|
1134 |
+
norm_num_groups=resnet_groups,
|
1135 |
+
)
|
1136 |
+
)
|
1137 |
+
self.attentions = nn.ModuleList(attentions)
|
1138 |
+
self.resnets = nn.ModuleList(resnets)
|
1139 |
+
|
1140 |
+
if add_upsample:
|
1141 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1142 |
+
else:
|
1143 |
+
self.upsamplers = None
|
1144 |
+
|
1145 |
+
self.gradient_checkpointing = False
|
1146 |
+
|
1147 |
+
def set_attention_slice(self, slice_size):
|
1148 |
+
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
1149 |
+
raise ValueError(
|
1150 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
1151 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
1152 |
+
)
|
1153 |
+
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
1154 |
+
raise ValueError(
|
1155 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
1156 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
1157 |
+
)
|
1158 |
+
|
1159 |
+
for attn in self.attentions:
|
1160 |
+
attn._set_attention_slice(slice_size)
|
1161 |
+
|
1162 |
+
self.gradient_checkpointing = False
|
1163 |
+
|
1164 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
1165 |
+
for attn in self.attentions:
|
1166 |
+
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
1167 |
+
|
1168 |
+
def forward(
|
1169 |
+
self,
|
1170 |
+
hidden_states,
|
1171 |
+
res_hidden_states_tuple,
|
1172 |
+
temb=None,
|
1173 |
+
encoder_hidden_states=None,
|
1174 |
+
upsample_size=None,
|
1175 |
+
attn_map=None,
|
1176 |
+
attn_shift=False,
|
1177 |
+
obj_ids=None,
|
1178 |
+
relationship=None
|
1179 |
+
):
|
1180 |
+
cross_attn_prob_list = list()
|
1181 |
+
for layer_idx, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
1182 |
+
# pop res hidden states
|
1183 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1184 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1185 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1186 |
+
|
1187 |
+
if self.training and self.gradient_checkpointing:
|
1188 |
+
|
1189 |
+
def create_custom_forward(module, return_dict=None):
|
1190 |
+
def custom_forward(*inputs):
|
1191 |
+
if return_dict is not None:
|
1192 |
+
return module(*inputs, return_dict=return_dict)
|
1193 |
+
else:
|
1194 |
+
return module(*inputs)
|
1195 |
+
|
1196 |
+
return custom_forward
|
1197 |
+
|
1198 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
1199 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1200 |
+
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
|
1201 |
+
)[0]
|
1202 |
+
else:
|
1203 |
+
hidden_states = resnet(hidden_states, temb)
|
1204 |
+
tmp_hidden_states, cross_attn_prob, save_value = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, attn_map=attn_map[layer_idx] if attn_map is not None else None, attn_shift=attn_shift, obj_ids=obj_ids, relationship=relationship)
|
1205 |
+
hidden_states = tmp_hidden_states.sample
|
1206 |
+
cross_attn_prob_list.append(cross_attn_prob)
|
1207 |
+
if self.upsamplers is not None:
|
1208 |
+
for upsampler in self.upsamplers:
|
1209 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
1210 |
+
|
1211 |
+
return hidden_states, cross_attn_prob_list, save_value
|
1212 |
+
|
1213 |
+
|
1214 |
+
class UpBlock2D(nn.Module):
|
1215 |
+
def __init__(
|
1216 |
+
self,
|
1217 |
+
in_channels: int,
|
1218 |
+
prev_output_channel: int,
|
1219 |
+
out_channels: int,
|
1220 |
+
temb_channels: int,
|
1221 |
+
dropout: float = 0.0,
|
1222 |
+
num_layers: int = 1,
|
1223 |
+
resnet_eps: float = 1e-6,
|
1224 |
+
resnet_time_scale_shift: str = "default",
|
1225 |
+
resnet_act_fn: str = "swish",
|
1226 |
+
resnet_groups: int = 32,
|
1227 |
+
resnet_pre_norm: bool = True,
|
1228 |
+
output_scale_factor=1.0,
|
1229 |
+
add_upsample=True,
|
1230 |
+
):
|
1231 |
+
super().__init__()
|
1232 |
+
resnets = []
|
1233 |
+
|
1234 |
+
for i in range(num_layers):
|
1235 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1236 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1237 |
+
|
1238 |
+
resnets.append(
|
1239 |
+
ResnetBlock2D(
|
1240 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1241 |
+
out_channels=out_channels,
|
1242 |
+
temb_channels=temb_channels,
|
1243 |
+
eps=resnet_eps,
|
1244 |
+
groups=resnet_groups,
|
1245 |
+
dropout=dropout,
|
1246 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1247 |
+
non_linearity=resnet_act_fn,
|
1248 |
+
output_scale_factor=output_scale_factor,
|
1249 |
+
pre_norm=resnet_pre_norm,
|
1250 |
+
)
|
1251 |
+
)
|
1252 |
+
|
1253 |
+
self.resnets = nn.ModuleList(resnets)
|
1254 |
+
|
1255 |
+
if add_upsample:
|
1256 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1257 |
+
else:
|
1258 |
+
self.upsamplers = None
|
1259 |
+
|
1260 |
+
self.gradient_checkpointing = False
|
1261 |
+
|
1262 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
1263 |
+
for resnet in self.resnets:
|
1264 |
+
# pop res hidden states
|
1265 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1266 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1267 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1268 |
+
|
1269 |
+
if self.training and self.gradient_checkpointing:
|
1270 |
+
|
1271 |
+
def create_custom_forward(module):
|
1272 |
+
def custom_forward(*inputs):
|
1273 |
+
return module(*inputs)
|
1274 |
+
|
1275 |
+
return custom_forward
|
1276 |
+
|
1277 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
1278 |
+
else:
|
1279 |
+
hidden_states = resnet(hidden_states, temb)
|
1280 |
+
|
1281 |
+
if self.upsamplers is not None:
|
1282 |
+
for upsampler in self.upsamplers:
|
1283 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
1284 |
+
|
1285 |
+
return hidden_states
|
1286 |
+
|
1287 |
+
|
1288 |
+
class UpDecoderBlock2D(nn.Module):
|
1289 |
+
def __init__(
|
1290 |
+
self,
|
1291 |
+
in_channels: int,
|
1292 |
+
out_channels: int,
|
1293 |
+
dropout: float = 0.0,
|
1294 |
+
num_layers: int = 1,
|
1295 |
+
resnet_eps: float = 1e-6,
|
1296 |
+
resnet_time_scale_shift: str = "default",
|
1297 |
+
resnet_act_fn: str = "swish",
|
1298 |
+
resnet_groups: int = 32,
|
1299 |
+
resnet_pre_norm: bool = True,
|
1300 |
+
output_scale_factor=1.0,
|
1301 |
+
add_upsample=True,
|
1302 |
+
):
|
1303 |
+
super().__init__()
|
1304 |
+
resnets = []
|
1305 |
+
|
1306 |
+
for i in range(num_layers):
|
1307 |
+
input_channels = in_channels if i == 0 else out_channels
|
1308 |
+
|
1309 |
+
resnets.append(
|
1310 |
+
ResnetBlock2D(
|
1311 |
+
in_channels=input_channels,
|
1312 |
+
out_channels=out_channels,
|
1313 |
+
temb_channels=None,
|
1314 |
+
eps=resnet_eps,
|
1315 |
+
groups=resnet_groups,
|
1316 |
+
dropout=dropout,
|
1317 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1318 |
+
non_linearity=resnet_act_fn,
|
1319 |
+
output_scale_factor=output_scale_factor,
|
1320 |
+
pre_norm=resnet_pre_norm,
|
1321 |
+
)
|
1322 |
+
)
|
1323 |
+
|
1324 |
+
self.resnets = nn.ModuleList(resnets)
|
1325 |
+
|
1326 |
+
if add_upsample:
|
1327 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1328 |
+
else:
|
1329 |
+
self.upsamplers = None
|
1330 |
+
|
1331 |
+
def forward(self, hidden_states):
|
1332 |
+
for resnet in self.resnets:
|
1333 |
+
hidden_states = resnet(hidden_states, temb=None)
|
1334 |
+
|
1335 |
+
if self.upsamplers is not None:
|
1336 |
+
for upsampler in self.upsamplers:
|
1337 |
+
hidden_states = upsampler(hidden_states)
|
1338 |
+
|
1339 |
+
return hidden_states
|
1340 |
+
|
1341 |
+
|
1342 |
+
class AttnUpDecoderBlock2D(nn.Module):
|
1343 |
+
def __init__(
|
1344 |
+
self,
|
1345 |
+
in_channels: int,
|
1346 |
+
out_channels: int,
|
1347 |
+
dropout: float = 0.0,
|
1348 |
+
num_layers: int = 1,
|
1349 |
+
resnet_eps: float = 1e-6,
|
1350 |
+
resnet_time_scale_shift: str = "default",
|
1351 |
+
resnet_act_fn: str = "swish",
|
1352 |
+
resnet_groups: int = 32,
|
1353 |
+
resnet_pre_norm: bool = True,
|
1354 |
+
attn_num_head_channels=1,
|
1355 |
+
output_scale_factor=1.0,
|
1356 |
+
add_upsample=True,
|
1357 |
+
):
|
1358 |
+
super().__init__()
|
1359 |
+
resnets = []
|
1360 |
+
attentions = []
|
1361 |
+
|
1362 |
+
for i in range(num_layers):
|
1363 |
+
input_channels = in_channels if i == 0 else out_channels
|
1364 |
+
|
1365 |
+
resnets.append(
|
1366 |
+
ResnetBlock2D(
|
1367 |
+
in_channels=input_channels,
|
1368 |
+
out_channels=out_channels,
|
1369 |
+
temb_channels=None,
|
1370 |
+
eps=resnet_eps,
|
1371 |
+
groups=resnet_groups,
|
1372 |
+
dropout=dropout,
|
1373 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1374 |
+
non_linearity=resnet_act_fn,
|
1375 |
+
output_scale_factor=output_scale_factor,
|
1376 |
+
pre_norm=resnet_pre_norm,
|
1377 |
+
)
|
1378 |
+
)
|
1379 |
+
attentions.append(
|
1380 |
+
AttentionBlock(
|
1381 |
+
out_channels,
|
1382 |
+
num_head_channels=attn_num_head_channels,
|
1383 |
+
rescale_output_factor=output_scale_factor,
|
1384 |
+
eps=resnet_eps,
|
1385 |
+
norm_num_groups=resnet_groups,
|
1386 |
+
)
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
self.attentions = nn.ModuleList(attentions)
|
1390 |
+
self.resnets = nn.ModuleList(resnets)
|
1391 |
+
|
1392 |
+
if add_upsample:
|
1393 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1394 |
+
else:
|
1395 |
+
self.upsamplers = None
|
1396 |
+
|
1397 |
+
def forward(self, hidden_states):
|
1398 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
1399 |
+
hidden_states = resnet(hidden_states, temb=None)
|
1400 |
+
hidden_states = attn(hidden_states)
|
1401 |
+
|
1402 |
+
if self.upsamplers is not None:
|
1403 |
+
for upsampler in self.upsamplers:
|
1404 |
+
hidden_states = upsampler(hidden_states)
|
1405 |
+
|
1406 |
+
return hidden_states
|
1407 |
+
|
1408 |
+
|
1409 |
+
class AttnSkipUpBlock2D(nn.Module):
|
1410 |
+
def __init__(
|
1411 |
+
self,
|
1412 |
+
in_channels: int,
|
1413 |
+
prev_output_channel: int,
|
1414 |
+
out_channels: int,
|
1415 |
+
temb_channels: int,
|
1416 |
+
dropout: float = 0.0,
|
1417 |
+
num_layers: int = 1,
|
1418 |
+
resnet_eps: float = 1e-6,
|
1419 |
+
resnet_time_scale_shift: str = "default",
|
1420 |
+
resnet_act_fn: str = "swish",
|
1421 |
+
resnet_pre_norm: bool = True,
|
1422 |
+
attn_num_head_channels=1,
|
1423 |
+
attention_type="default",
|
1424 |
+
output_scale_factor=np.sqrt(2.0),
|
1425 |
+
upsample_padding=1,
|
1426 |
+
add_upsample=True,
|
1427 |
+
):
|
1428 |
+
super().__init__()
|
1429 |
+
self.attentions = nn.ModuleList([])
|
1430 |
+
self.resnets = nn.ModuleList([])
|
1431 |
+
|
1432 |
+
self.attention_type = attention_type
|
1433 |
+
|
1434 |
+
for i in range(num_layers):
|
1435 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1436 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1437 |
+
|
1438 |
+
self.resnets.append(
|
1439 |
+
ResnetBlock2D(
|
1440 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1441 |
+
out_channels=out_channels,
|
1442 |
+
temb_channels=temb_channels,
|
1443 |
+
eps=resnet_eps,
|
1444 |
+
groups=min(resnet_in_channels + res_skip_channels // 4, 32),
|
1445 |
+
groups_out=min(out_channels // 4, 32),
|
1446 |
+
dropout=dropout,
|
1447 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1448 |
+
non_linearity=resnet_act_fn,
|
1449 |
+
output_scale_factor=output_scale_factor,
|
1450 |
+
pre_norm=resnet_pre_norm,
|
1451 |
+
)
|
1452 |
+
)
|
1453 |
+
|
1454 |
+
self.attentions.append(
|
1455 |
+
AttentionBlock(
|
1456 |
+
out_channels,
|
1457 |
+
num_head_channels=attn_num_head_channels,
|
1458 |
+
rescale_output_factor=output_scale_factor,
|
1459 |
+
eps=resnet_eps,
|
1460 |
+
)
|
1461 |
+
)
|
1462 |
+
|
1463 |
+
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
|
1464 |
+
if add_upsample:
|
1465 |
+
self.resnet_up = ResnetBlock2D(
|
1466 |
+
in_channels=out_channels,
|
1467 |
+
out_channels=out_channels,
|
1468 |
+
temb_channels=temb_channels,
|
1469 |
+
eps=resnet_eps,
|
1470 |
+
groups=min(out_channels // 4, 32),
|
1471 |
+
groups_out=min(out_channels // 4, 32),
|
1472 |
+
dropout=dropout,
|
1473 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1474 |
+
non_linearity=resnet_act_fn,
|
1475 |
+
output_scale_factor=output_scale_factor,
|
1476 |
+
pre_norm=resnet_pre_norm,
|
1477 |
+
use_in_shortcut=True,
|
1478 |
+
up=True,
|
1479 |
+
kernel="fir",
|
1480 |
+
)
|
1481 |
+
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1482 |
+
self.skip_norm = torch.nn.GroupNorm(
|
1483 |
+
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
1484 |
+
)
|
1485 |
+
self.act = nn.SiLU()
|
1486 |
+
else:
|
1487 |
+
self.resnet_up = None
|
1488 |
+
self.skip_conv = None
|
1489 |
+
self.skip_norm = None
|
1490 |
+
self.act = None
|
1491 |
+
|
1492 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
|
1493 |
+
for resnet in self.resnets:
|
1494 |
+
# pop res hidden states
|
1495 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1496 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1497 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1498 |
+
|
1499 |
+
hidden_states = resnet(hidden_states, temb)
|
1500 |
+
|
1501 |
+
hidden_states = self.attentions[0](hidden_states)
|
1502 |
+
|
1503 |
+
if skip_sample is not None:
|
1504 |
+
skip_sample = self.upsampler(skip_sample)
|
1505 |
+
else:
|
1506 |
+
skip_sample = 0
|
1507 |
+
|
1508 |
+
if self.resnet_up is not None:
|
1509 |
+
skip_sample_states = self.skip_norm(hidden_states)
|
1510 |
+
skip_sample_states = self.act(skip_sample_states)
|
1511 |
+
skip_sample_states = self.skip_conv(skip_sample_states)
|
1512 |
+
|
1513 |
+
skip_sample = skip_sample + skip_sample_states
|
1514 |
+
|
1515 |
+
hidden_states = self.resnet_up(hidden_states, temb)
|
1516 |
+
|
1517 |
+
return hidden_states, skip_sample
|
1518 |
+
|
1519 |
+
|
1520 |
+
class SkipUpBlock2D(nn.Module):
|
1521 |
+
def __init__(
|
1522 |
+
self,
|
1523 |
+
in_channels: int,
|
1524 |
+
prev_output_channel: int,
|
1525 |
+
out_channels: int,
|
1526 |
+
temb_channels: int,
|
1527 |
+
dropout: float = 0.0,
|
1528 |
+
num_layers: int = 1,
|
1529 |
+
resnet_eps: float = 1e-6,
|
1530 |
+
resnet_time_scale_shift: str = "default",
|
1531 |
+
resnet_act_fn: str = "swish",
|
1532 |
+
resnet_pre_norm: bool = True,
|
1533 |
+
output_scale_factor=np.sqrt(2.0),
|
1534 |
+
add_upsample=True,
|
1535 |
+
upsample_padding=1,
|
1536 |
+
):
|
1537 |
+
super().__init__()
|
1538 |
+
self.resnets = nn.ModuleList([])
|
1539 |
+
|
1540 |
+
for i in range(num_layers):
|
1541 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1542 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1543 |
+
|
1544 |
+
self.resnets.append(
|
1545 |
+
ResnetBlock2D(
|
1546 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1547 |
+
out_channels=out_channels,
|
1548 |
+
temb_channels=temb_channels,
|
1549 |
+
eps=resnet_eps,
|
1550 |
+
groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
|
1551 |
+
groups_out=min(out_channels // 4, 32),
|
1552 |
+
dropout=dropout,
|
1553 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1554 |
+
non_linearity=resnet_act_fn,
|
1555 |
+
output_scale_factor=output_scale_factor,
|
1556 |
+
pre_norm=resnet_pre_norm,
|
1557 |
+
)
|
1558 |
+
)
|
1559 |
+
|
1560 |
+
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
|
1561 |
+
if add_upsample:
|
1562 |
+
self.resnet_up = ResnetBlock2D(
|
1563 |
+
in_channels=out_channels,
|
1564 |
+
out_channels=out_channels,
|
1565 |
+
temb_channels=temb_channels,
|
1566 |
+
eps=resnet_eps,
|
1567 |
+
groups=min(out_channels // 4, 32),
|
1568 |
+
groups_out=min(out_channels // 4, 32),
|
1569 |
+
dropout=dropout,
|
1570 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1571 |
+
non_linearity=resnet_act_fn,
|
1572 |
+
output_scale_factor=output_scale_factor,
|
1573 |
+
pre_norm=resnet_pre_norm,
|
1574 |
+
use_in_shortcut=True,
|
1575 |
+
up=True,
|
1576 |
+
kernel="fir",
|
1577 |
+
)
|
1578 |
+
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1579 |
+
self.skip_norm = torch.nn.GroupNorm(
|
1580 |
+
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
1581 |
+
)
|
1582 |
+
self.act = nn.SiLU()
|
1583 |
+
else:
|
1584 |
+
self.resnet_up = None
|
1585 |
+
self.skip_conv = None
|
1586 |
+
self.skip_norm = None
|
1587 |
+
self.act = None
|
1588 |
+
|
1589 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
|
1590 |
+
for resnet in self.resnets:
|
1591 |
+
# pop res hidden states
|
1592 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1593 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1594 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1595 |
+
|
1596 |
+
hidden_states = resnet(hidden_states, temb)
|
1597 |
+
|
1598 |
+
if skip_sample is not None:
|
1599 |
+
skip_sample = self.upsampler(skip_sample)
|
1600 |
+
else:
|
1601 |
+
skip_sample = 0
|
1602 |
+
|
1603 |
+
if self.resnet_up is not None:
|
1604 |
+
skip_sample_states = self.skip_norm(hidden_states)
|
1605 |
+
skip_sample_states = self.act(skip_sample_states)
|
1606 |
+
skip_sample_states = self.skip_conv(skip_sample_states)
|
1607 |
+
|
1608 |
+
skip_sample = skip_sample + skip_sample_states
|
1609 |
+
|
1610 |
+
hidden_states = self.resnet_up(hidden_states, temb)
|
1611 |
+
|
1612 |
+
return hidden_states, skip_sample
|
my_model/unet_2d_condition.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import pdb
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.modeling_utils import ModelMixin
|
24 |
+
from diffusers.utils import BaseOutput, logging
|
25 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
26 |
+
from .unet_2d_blocks import (
|
27 |
+
CrossAttnDownBlock2D,
|
28 |
+
CrossAttnUpBlock2D,
|
29 |
+
DownBlock2D,
|
30 |
+
UNetMidBlock2DCrossAttn,
|
31 |
+
UpBlock2D,
|
32 |
+
get_down_block,
|
33 |
+
get_up_block,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
+
|
39 |
+
|
40 |
+
@dataclass
|
41 |
+
class UNet2DConditionOutput(BaseOutput):
|
42 |
+
"""
|
43 |
+
Args:
|
44 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
45 |
+
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
46 |
+
"""
|
47 |
+
|
48 |
+
sample: torch.FloatTensor
|
49 |
+
|
50 |
+
|
51 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
52 |
+
r"""
|
53 |
+
UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
|
54 |
+
and returns sample shaped output.
|
55 |
+
|
56 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
57 |
+
implements for all the models (such as downloading or saving, etc.)
|
58 |
+
|
59 |
+
Parameters:
|
60 |
+
sample_size (`int`, *optional*): The size of the input sample.
|
61 |
+
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
|
62 |
+
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
|
63 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
64 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
65 |
+
Whether to flip the sin to cos in the time embedding.
|
66 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
67 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
68 |
+
The tuple of downsample blocks to use.
|
69 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
|
70 |
+
The tuple of upsample blocks to use.
|
71 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
72 |
+
The tuple of output channels for each block.
|
73 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
74 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
75 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
76 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
77 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
78 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
79 |
+
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
|
80 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
81 |
+
"""
|
82 |
+
|
83 |
+
_supports_gradient_checkpointing = True
|
84 |
+
|
85 |
+
@register_to_config
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
sample_size: Optional[int] = None,
|
89 |
+
in_channels: int = 4,
|
90 |
+
out_channels: int = 4,
|
91 |
+
center_input_sample: bool = False,
|
92 |
+
flip_sin_to_cos: bool = True,
|
93 |
+
freq_shift: int = 0,
|
94 |
+
down_block_types: Tuple[str] = (
|
95 |
+
"CrossAttnDownBlock2D",
|
96 |
+
"CrossAttnDownBlock2D",
|
97 |
+
"CrossAttnDownBlock2D",
|
98 |
+
"DownBlock2D",
|
99 |
+
),
|
100 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
101 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
102 |
+
layers_per_block: int = 2,
|
103 |
+
downsample_padding: int = 1,
|
104 |
+
mid_block_scale_factor: float = 1,
|
105 |
+
act_fn: str = "silu",
|
106 |
+
norm_num_groups: int = 32,
|
107 |
+
norm_eps: float = 1e-5,
|
108 |
+
cross_attention_dim: int = 1280,
|
109 |
+
attention_head_dim: int = 8,
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
|
113 |
+
self.sample_size = sample_size
|
114 |
+
time_embed_dim = block_out_channels[0] * 4
|
115 |
+
|
116 |
+
# input
|
117 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
118 |
+
|
119 |
+
# time
|
120 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
121 |
+
timestep_input_dim = block_out_channels[0]
|
122 |
+
|
123 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
124 |
+
|
125 |
+
self.down_blocks = nn.ModuleList([])
|
126 |
+
self.mid_block = None
|
127 |
+
self.up_blocks = nn.ModuleList([])
|
128 |
+
|
129 |
+
# down
|
130 |
+
output_channel = block_out_channels[0]
|
131 |
+
for i, down_block_type in enumerate(down_block_types):
|
132 |
+
input_channel = output_channel
|
133 |
+
output_channel = block_out_channels[i]
|
134 |
+
is_final_block = i == len(block_out_channels) - 1
|
135 |
+
|
136 |
+
down_block = get_down_block(
|
137 |
+
down_block_type,
|
138 |
+
num_layers=layers_per_block,
|
139 |
+
in_channels=input_channel,
|
140 |
+
out_channels=output_channel,
|
141 |
+
temb_channels=time_embed_dim,
|
142 |
+
add_downsample=not is_final_block,
|
143 |
+
resnet_eps=norm_eps,
|
144 |
+
resnet_act_fn=act_fn,
|
145 |
+
resnet_groups=norm_num_groups,
|
146 |
+
cross_attention_dim=cross_attention_dim,
|
147 |
+
attn_num_head_channels=attention_head_dim,
|
148 |
+
downsample_padding=downsample_padding,
|
149 |
+
)
|
150 |
+
self.down_blocks.append(down_block)
|
151 |
+
|
152 |
+
# mid
|
153 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
154 |
+
in_channels=block_out_channels[-1],
|
155 |
+
temb_channels=time_embed_dim,
|
156 |
+
resnet_eps=norm_eps,
|
157 |
+
resnet_act_fn=act_fn,
|
158 |
+
output_scale_factor=mid_block_scale_factor,
|
159 |
+
resnet_time_scale_shift="default",
|
160 |
+
cross_attention_dim=cross_attention_dim,
|
161 |
+
attn_num_head_channels=attention_head_dim,
|
162 |
+
resnet_groups=norm_num_groups,
|
163 |
+
)
|
164 |
+
|
165 |
+
# count how many layers upsample the images
|
166 |
+
self.num_upsamplers = 0
|
167 |
+
|
168 |
+
# up
|
169 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
170 |
+
output_channel = reversed_block_out_channels[0]
|
171 |
+
for i, up_block_type in enumerate(up_block_types):
|
172 |
+
is_final_block = i == len(block_out_channels) - 1
|
173 |
+
|
174 |
+
prev_output_channel = output_channel
|
175 |
+
output_channel = reversed_block_out_channels[i]
|
176 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
177 |
+
|
178 |
+
# add upsample block for all BUT final layer
|
179 |
+
if not is_final_block:
|
180 |
+
add_upsample = True
|
181 |
+
self.num_upsamplers += 1
|
182 |
+
else:
|
183 |
+
add_upsample = False
|
184 |
+
|
185 |
+
up_block = get_up_block(
|
186 |
+
up_block_type,
|
187 |
+
num_layers=layers_per_block + 1,
|
188 |
+
in_channels=input_channel,
|
189 |
+
out_channels=output_channel,
|
190 |
+
prev_output_channel=prev_output_channel,
|
191 |
+
temb_channels=time_embed_dim,
|
192 |
+
add_upsample=add_upsample,
|
193 |
+
resnet_eps=norm_eps,
|
194 |
+
resnet_act_fn=act_fn,
|
195 |
+
resnet_groups=norm_num_groups,
|
196 |
+
cross_attention_dim=cross_attention_dim,
|
197 |
+
attn_num_head_channels=attention_head_dim,
|
198 |
+
)
|
199 |
+
self.up_blocks.append(up_block)
|
200 |
+
prev_output_channel = output_channel
|
201 |
+
|
202 |
+
# out
|
203 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
204 |
+
self.conv_act = nn.SiLU()
|
205 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
206 |
+
|
207 |
+
def set_attention_slice(self, slice_size):
|
208 |
+
if slice_size is not None and self.config.attention_head_dim % slice_size != 0:
|
209 |
+
raise ValueError(
|
210 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
211 |
+
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
|
212 |
+
)
|
213 |
+
if slice_size is not None and slice_size > self.config.attention_head_dim:
|
214 |
+
raise ValueError(
|
215 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
216 |
+
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
|
217 |
+
)
|
218 |
+
|
219 |
+
for block in self.down_blocks:
|
220 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
221 |
+
block.set_attention_slice(slice_size)
|
222 |
+
|
223 |
+
self.mid_block.set_attention_slice(slice_size)
|
224 |
+
|
225 |
+
for block in self.up_blocks:
|
226 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
227 |
+
block.set_attention_slice(slice_size)
|
228 |
+
|
229 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
230 |
+
for block in self.down_blocks:
|
231 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
232 |
+
block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
233 |
+
|
234 |
+
self.mid_block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
235 |
+
|
236 |
+
for block in self.up_blocks:
|
237 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
238 |
+
block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
239 |
+
|
240 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
241 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
|
242 |
+
module.gradient_checkpointing = value
|
243 |
+
|
244 |
+
def forward(
|
245 |
+
self,
|
246 |
+
sample: torch.FloatTensor,
|
247 |
+
timestep: Union[torch.Tensor, float, int],
|
248 |
+
index,
|
249 |
+
encoder_hidden_states: torch.Tensor,
|
250 |
+
attn_map: Union[torch.Tensor],
|
251 |
+
cfg,
|
252 |
+
return_dict: bool = True,
|
253 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
254 |
+
r"""
|
255 |
+
Args:
|
256 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs_coarse tensor
|
257 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
258 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states
|
259 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
260 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
264 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
265 |
+
returning a tuple, the first element is the sample tensor.
|
266 |
+
"""
|
267 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
268 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
269 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
270 |
+
# on the fly if necessary.
|
271 |
+
device = sample.get_device() if sample.is_cuda else 'cpu'
|
272 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
273 |
+
|
274 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
275 |
+
forward_upsample_size = False
|
276 |
+
upsample_size = None
|
277 |
+
|
278 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
279 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
280 |
+
forward_upsample_size = True
|
281 |
+
|
282 |
+
# 0. center input if necessary
|
283 |
+
if self.config.center_input_sample:
|
284 |
+
sample = 2 * sample - 1.0
|
285 |
+
|
286 |
+
# 1. time
|
287 |
+
timesteps = timestep
|
288 |
+
if not torch.is_tensor(timesteps):
|
289 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
290 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
291 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
292 |
+
timesteps = timesteps[None].to(sample.device)
|
293 |
+
|
294 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
295 |
+
timesteps = timesteps.expand(sample.shape[0])
|
296 |
+
|
297 |
+
t_emb = self.time_proj(timesteps)
|
298 |
+
|
299 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
300 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
301 |
+
# there might be better ways to encapsulate this.
|
302 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
303 |
+
emb = self.time_embedding(t_emb)
|
304 |
+
# attn_map_uncond, attn_map = attn_map_integrated.chunk(2)
|
305 |
+
# 2. pre-process
|
306 |
+
sample = self.conv_in(sample)
|
307 |
+
# print('index', index)
|
308 |
+
# 3. down
|
309 |
+
attn_down = []
|
310 |
+
value_down = []
|
311 |
+
down_block_res_samples = (sample,)
|
312 |
+
# print(len(attn_map['attn_down']), len(attn_map['attn_down'][0]), len(attn_map['attn_down'][0][0]), attn_map['attn_down'][0][0][0].shape)
|
313 |
+
for block_idx, downsample_block in enumerate(self.down_blocks):
|
314 |
+
if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None:
|
315 |
+
if block_idx < 5:
|
316 |
+
# pdb.set_trace()
|
317 |
+
sample, res_samples, cross_atten_prob, save_value = downsample_block(
|
318 |
+
hidden_states=sample,
|
319 |
+
temb=emb,
|
320 |
+
encoder_hidden_states=encoder_hidden_states,
|
321 |
+
attn_map=attn_map['attn_down'][index][block_idx] if index < cfg.training.down_attn_map else None,
|
322 |
+
attn_shift=True if index < cfg.training.down_attn_shift else False,
|
323 |
+
obj_ids=cfg.inference.obj_ids if 'obj_ids' in cfg.inference else None,
|
324 |
+
relationship=cfg.inference.relationship if 'relationship' in cfg.inference else None
|
325 |
+
|
326 |
+
)
|
327 |
+
else:
|
328 |
+
sample, res_samples, cross_atten_prob, save_value = downsample_block(
|
329 |
+
hidden_states=sample,
|
330 |
+
temb=emb,
|
331 |
+
encoder_hidden_states=encoder_hidden_states,
|
332 |
+
attn_map=None
|
333 |
+
)
|
334 |
+
attn_down.append(cross_atten_prob)
|
335 |
+
value_down.append(save_value)
|
336 |
+
else:
|
337 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
338 |
+
|
339 |
+
down_block_res_samples += res_samples
|
340 |
+
|
341 |
+
# 4. mid
|
342 |
+
sample, attn_mid, value_mid = self.mid_block(sample, index, emb, encoder_hidden_states=encoder_hidden_states, attn_map=attn_map['attn_mid'][index] if index < cfg.training.mid_attn_map else None,
|
343 |
+
attn_shift=True if index < cfg.training.mid_attn_shift else False, attn_map_step=cfg.training.mid_attn_map,
|
344 |
+
obj_ids=cfg.inference.obj_ids if 'obj_ids' in cfg.inference else None,
|
345 |
+
relationship=cfg.inference.relationship if 'relationship' in cfg.inference else None
|
346 |
+
)
|
347 |
+
|
348 |
+
# 5. up
|
349 |
+
attn_up = []
|
350 |
+
value_up = []
|
351 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
352 |
+
is_final_block = i == len(self.up_blocks) - 1
|
353 |
+
|
354 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
355 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
356 |
+
|
357 |
+
# if we have not reached the final block and need to forward the
|
358 |
+
# upsample size, we do it here
|
359 |
+
if not is_final_block and forward_upsample_size:
|
360 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
361 |
+
|
362 |
+
if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None:
|
363 |
+
sample, cross_atten_prob, save_value = upsample_block(
|
364 |
+
hidden_states=sample,
|
365 |
+
temb=emb,
|
366 |
+
res_hidden_states_tuple=res_samples,
|
367 |
+
encoder_hidden_states=encoder_hidden_states,
|
368 |
+
upsample_size=upsample_size,
|
369 |
+
# attn_map=None,
|
370 |
+
attn_shift=True if index < cfg.training.up_attn_shift else False,
|
371 |
+
attn_map=attn_map['attn_up'][index][i-1] if index < cfg.training.up_attn_map else None,
|
372 |
+
obj_ids=cfg.inference.obj_ids if 'obj_ids' in cfg.inference else None,
|
373 |
+
relationship=cfg.inference.relationship if 'relationship' in cfg.inference else None
|
374 |
+
)
|
375 |
+
attn_up.append(cross_atten_prob)
|
376 |
+
value_mid.append(save_value)
|
377 |
+
else:
|
378 |
+
sample = upsample_block(
|
379 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
380 |
+
)
|
381 |
+
# 6. post-process
|
382 |
+
sample = self.conv_norm_out(sample)
|
383 |
+
sample = self.conv_act(sample)
|
384 |
+
sample = self.conv_out(sample)
|
385 |
+
|
386 |
+
if not return_dict:
|
387 |
+
return (sample,)
|
388 |
+
|
389 |
+
return UNet2DConditionOutput(sample=sample), attn_up, attn_mid, attn_down, value_up, value_mid, value_down
|
utils.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
def compute_ca_loss(attn_maps_mid, attn_maps_up, bboxes, object_positions):
|
4 |
+
loss = 0
|
5 |
+
object_number = len(bboxes)
|
6 |
+
if object_number == 0:
|
7 |
+
return torch.tensor(0).float().cuda()
|
8 |
+
for attn_map_integrated in attn_maps_mid:
|
9 |
+
attn_map = attn_map_integrated.chunk(2)[1]
|
10 |
+
|
11 |
+
#
|
12 |
+
b, i, j = attn_map.shape
|
13 |
+
H = W = int(math.sqrt(i))
|
14 |
+
for obj_idx in range(object_number):
|
15 |
+
obj_loss = 0
|
16 |
+
mask = torch.zeros(size=(H, W)).cuda()
|
17 |
+
for obj_box in bboxes[obj_idx]:
|
18 |
+
|
19 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
20 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
21 |
+
mask[y_min: y_max, x_min: x_max] = 1
|
22 |
+
|
23 |
+
for obj_position in object_positions[obj_idx]:
|
24 |
+
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
|
25 |
+
|
26 |
+
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1)/ca_map_obj.reshape(b, -1).sum(dim=-1)
|
27 |
+
|
28 |
+
obj_loss += torch.mean((1 - activation_value) ** 2)
|
29 |
+
loss += (obj_loss/len(object_positions[obj_idx]))
|
30 |
+
|
31 |
+
# compute loss on padding tokens
|
32 |
+
# activation_value = torch.zeros(size=(b, )).cuda()
|
33 |
+
# for obj_idx in range(object_number):
|
34 |
+
# bbox = bboxes[obj_idx]
|
35 |
+
# ca_map_obj = attn_map[:, :, padding_start:].reshape(b, H, W, -1)
|
36 |
+
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
|
37 |
+
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
|
38 |
+
#
|
39 |
+
# loss += torch.mean((1 - activation_value) ** 2)
|
40 |
+
|
41 |
+
|
42 |
+
for attn_map_integrated in attn_maps_up[0]:
|
43 |
+
attn_map = attn_map_integrated.chunk(2)[1]
|
44 |
+
#
|
45 |
+
b, i, j = attn_map.shape
|
46 |
+
H = W = int(math.sqrt(i))
|
47 |
+
|
48 |
+
for obj_idx in range(object_number):
|
49 |
+
obj_loss = 0
|
50 |
+
mask = torch.zeros(size=(H, W)).cuda()
|
51 |
+
for obj_box in bboxes[obj_idx]:
|
52 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
53 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
54 |
+
mask[y_min: y_max, x_min: x_max] = 1
|
55 |
+
|
56 |
+
for obj_position in object_positions[obj_idx]:
|
57 |
+
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
|
58 |
+
# ca_map_obj = attn_map[:, :, object_positions[obj_position]].reshape(b, H, W)
|
59 |
+
|
60 |
+
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(
|
61 |
+
dim=-1)
|
62 |
+
|
63 |
+
obj_loss += torch.mean((1 - activation_value) ** 2)
|
64 |
+
loss += (obj_loss / len(object_positions[obj_idx]))
|
65 |
+
|
66 |
+
# compute loss on padding tokens
|
67 |
+
# activation_value = torch.zeros(size=(b, )).cuda()
|
68 |
+
# for obj_idx in range(object_number):
|
69 |
+
# bbox = bboxes[obj_idx]
|
70 |
+
# ca_map_obj = attn_map[:, :,padding_start:].reshape(b, H, W, -1)
|
71 |
+
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
|
72 |
+
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
|
73 |
+
#
|
74 |
+
# loss += torch.mean((1 - activation_value) ** 2)
|
75 |
+
loss = loss / (object_number * (len(attn_maps_up[0]) + len(attn_maps_mid)))
|
76 |
+
return loss
|