Spaces:
Paused
Paused
silentchen
commited on
Commit
·
3ab28ab
1
Parent(s):
eea38fb
first commit
Browse files- DejaVuSansMono.ttf +0 -0
- app.py +748 -0
- images/hello_kitty_results.png +0 -0
- images/input.png +0 -0
- requirements.txt +18 -0
DejaVuSansMono.ttf
ADDED
Binary file (341 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,748 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from omegaconf import OmegaConf
|
4 |
+
# from gligen.task_grounded_generation import grounded_generation_box, load_ckpt, load_common_ckpt
|
5 |
+
|
6 |
+
import json
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image, ImageDraw, ImageFont
|
9 |
+
from functools import partial
|
10 |
+
from collections import Counter
|
11 |
+
import math
|
12 |
+
import gc
|
13 |
+
|
14 |
+
from gradio import processing_utils
|
15 |
+
from typing import Optional
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from datetime import datetime
|
20 |
+
|
21 |
+
from huggingface_hub import hf_hub_download
|
22 |
+
|
23 |
+
hf_hub_download = partial(hf_hub_download, library_name="gligen_demo")
|
24 |
+
|
25 |
+
import sys
|
26 |
+
|
27 |
+
sys.tracebacklimit = 0
|
28 |
+
|
29 |
+
|
30 |
+
def load_from_hf(repo_id, filename='diffusion_pytorch_model.bin', subfolder=None):
|
31 |
+
cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder)
|
32 |
+
return torch.load(cache_file, map_location='cpu')
|
33 |
+
|
34 |
+
|
35 |
+
def load_ckpt_config_from_hf(modality):
|
36 |
+
ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='model')
|
37 |
+
config = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='config')
|
38 |
+
return ckpt, config
|
39 |
+
|
40 |
+
|
41 |
+
def ckpt_load_helper(modality, is_inpaint, is_style, common_instances=None):
|
42 |
+
pretrained_ckpt_gligen, config = load_ckpt_config_from_hf(modality)
|
43 |
+
config = OmegaConf.create(config["_content"]) # config used in training
|
44 |
+
config.alpha_scale = 1.0
|
45 |
+
config.model['params']['is_inpaint'] = is_inpaint
|
46 |
+
config.model['params']['is_style'] = is_style
|
47 |
+
|
48 |
+
if common_instances is None:
|
49 |
+
common_ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'common.pth', subfolder='model')
|
50 |
+
common_instances = load_common_ckpt(config, common_ckpt)
|
51 |
+
|
52 |
+
loaded_model_list = load_ckpt(config, pretrained_ckpt_gligen, common_instances)
|
53 |
+
|
54 |
+
return loaded_model_list, common_instances
|
55 |
+
|
56 |
+
|
57 |
+
class Instance:
|
58 |
+
def __init__(self, capacity=2):
|
59 |
+
self.model_type = 'base'
|
60 |
+
self.loaded_model_list = {}
|
61 |
+
self.counter = Counter()
|
62 |
+
self.global_counter = Counter()
|
63 |
+
self.loaded_model_list['base'], self.common_instances = ckpt_load_helper(
|
64 |
+
'gligen-generation-text-box',
|
65 |
+
is_inpaint=False, is_style=False, common_instances=None
|
66 |
+
)
|
67 |
+
self.capacity = capacity
|
68 |
+
|
69 |
+
def _log(self, model_type, batch_size, instruction, phrase_list):
|
70 |
+
self.counter[model_type] += 1
|
71 |
+
self.global_counter[model_type] += 1
|
72 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
73 |
+
print('[{}] Current: {}, All: {}. Samples: {}, prompt: {}, phrases: {}'.format(
|
74 |
+
current_time, dict(self.counter), dict(self.global_counter), batch_size, instruction, phrase_list
|
75 |
+
))
|
76 |
+
|
77 |
+
def get_model(self, model_type, batch_size, instruction, phrase_list):
|
78 |
+
if model_type in self.loaded_model_list:
|
79 |
+
self._log(model_type, batch_size, instruction, phrase_list)
|
80 |
+
return self.loaded_model_list[model_type]
|
81 |
+
|
82 |
+
if self.capacity == len(self.loaded_model_list):
|
83 |
+
least_used_type = self.counter.most_common()[-1][0]
|
84 |
+
del self.loaded_model_list[least_used_type]
|
85 |
+
del self.counter[least_used_type]
|
86 |
+
gc.collect()
|
87 |
+
torch.cuda.empty_cache()
|
88 |
+
|
89 |
+
self.loaded_model_list[model_type] = self._get_model(model_type)
|
90 |
+
self._log(model_type, batch_size, instruction, phrase_list)
|
91 |
+
return self.loaded_model_list[model_type]
|
92 |
+
|
93 |
+
def _get_model(self, model_type):
|
94 |
+
if model_type == 'base':
|
95 |
+
return ckpt_load_helper(
|
96 |
+
'gligen-generation-text-box',
|
97 |
+
is_inpaint=False, is_style=False, common_instances=self.common_instances
|
98 |
+
)[0]
|
99 |
+
elif model_type == 'inpaint':
|
100 |
+
return ckpt_load_helper(
|
101 |
+
'gligen-inpainting-text-box',
|
102 |
+
is_inpaint=True, is_style=False, common_instances=self.common_instances
|
103 |
+
)[0]
|
104 |
+
elif model_type == 'style':
|
105 |
+
return ckpt_load_helper(
|
106 |
+
'gligen-generation-text-image-box',
|
107 |
+
is_inpaint=False, is_style=True, common_instances=self.common_instances
|
108 |
+
)[0]
|
109 |
+
|
110 |
+
assert False
|
111 |
+
|
112 |
+
|
113 |
+
# instance = Instance()
|
114 |
+
|
115 |
+
|
116 |
+
def load_clip_model():
|
117 |
+
from transformers import CLIPProcessor, CLIPModel
|
118 |
+
version = "openai/clip-vit-large-patch14"
|
119 |
+
model = CLIPModel.from_pretrained(version).cuda()
|
120 |
+
processor = CLIPProcessor.from_pretrained(version)
|
121 |
+
|
122 |
+
return {
|
123 |
+
'version': version,
|
124 |
+
'model': model,
|
125 |
+
'processor': processor,
|
126 |
+
}
|
127 |
+
|
128 |
+
|
129 |
+
# clip_model = load_clip_model()
|
130 |
+
|
131 |
+
|
132 |
+
class ImageMask(gr.components.Image):
|
133 |
+
"""
|
134 |
+
Sets: source="canvas", tool="sketch"
|
135 |
+
"""
|
136 |
+
|
137 |
+
is_template = True
|
138 |
+
|
139 |
+
def __init__(self, **kwargs):
|
140 |
+
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
|
141 |
+
|
142 |
+
def preprocess(self, x):
|
143 |
+
if x is None:
|
144 |
+
return x
|
145 |
+
if self.tool == "sketch" and self.source in ["upload", "webcam"] and type(x) != dict:
|
146 |
+
decode_image = processing_utils.decode_base64_to_image(x)
|
147 |
+
width, height = decode_image.size
|
148 |
+
mask = np.zeros((height, width, 4), dtype=np.uint8)
|
149 |
+
mask[..., -1] = 255
|
150 |
+
mask = self.postprocess(mask)
|
151 |
+
x = {'image': x, 'mask': mask}
|
152 |
+
return super().preprocess(x)
|
153 |
+
|
154 |
+
|
155 |
+
class Blocks(gr.Blocks):
|
156 |
+
|
157 |
+
def __init__(
|
158 |
+
self,
|
159 |
+
theme: str = "default",
|
160 |
+
analytics_enabled: Optional[bool] = None,
|
161 |
+
mode: str = "blocks",
|
162 |
+
title: str = "Gradio",
|
163 |
+
css: Optional[str] = None,
|
164 |
+
**kwargs,
|
165 |
+
):
|
166 |
+
self.extra_configs = {
|
167 |
+
'thumbnail': kwargs.pop('thumbnail', ''),
|
168 |
+
'url': kwargs.pop('url', 'https://gradio.app/'),
|
169 |
+
'creator': kwargs.pop('creator', '@teamGradio'),
|
170 |
+
}
|
171 |
+
|
172 |
+
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
|
173 |
+
warnings.filterwarnings("ignore")
|
174 |
+
|
175 |
+
def get_config_file(self):
|
176 |
+
config = super(Blocks, self).get_config_file()
|
177 |
+
|
178 |
+
for k, v in self.extra_configs.items():
|
179 |
+
config[k] = v
|
180 |
+
|
181 |
+
return config
|
182 |
+
|
183 |
+
|
184 |
+
'''
|
185 |
+
inference model
|
186 |
+
'''
|
187 |
+
|
188 |
+
|
189 |
+
@torch.no_grad()
|
190 |
+
def inference(task, language_instruction, grounding_instruction, inpainting_boxes_nodrop, image,
|
191 |
+
alpha_sample, guidance_scale, batch_size,
|
192 |
+
fix_seed, rand_seed, actual_mask, style_image,
|
193 |
+
*args, **kwargs):
|
194 |
+
grounding_instruction = json.loads(grounding_instruction)
|
195 |
+
phrase_list, location_list = [], []
|
196 |
+
for k, v in grounding_instruction.items():
|
197 |
+
phrase_list.append(k)
|
198 |
+
location_list.append(v)
|
199 |
+
|
200 |
+
placeholder_image = Image.open('images/teddy.jpg').convert("RGB")
|
201 |
+
image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled
|
202 |
+
|
203 |
+
batch_size = int(batch_size)
|
204 |
+
if not 1 <= batch_size <= 4:
|
205 |
+
batch_size = 2
|
206 |
+
|
207 |
+
if style_image == None:
|
208 |
+
has_text_mask = 1
|
209 |
+
has_image_mask = 0 # then we hack above 'image_list'
|
210 |
+
else:
|
211 |
+
valid_phrase_len = len(phrase_list)
|
212 |
+
|
213 |
+
phrase_list += ['placeholder']
|
214 |
+
has_text_mask = [1] * valid_phrase_len + [0]
|
215 |
+
|
216 |
+
image_list = [placeholder_image] * valid_phrase_len + [style_image]
|
217 |
+
has_image_mask = [0] * valid_phrase_len + [1]
|
218 |
+
|
219 |
+
location_list += [[0.0, 0.0, 1, 0.01]] # style image grounding location
|
220 |
+
|
221 |
+
if task == 'Grounded Inpainting':
|
222 |
+
alpha_sample = 1.0
|
223 |
+
|
224 |
+
instruction = dict(
|
225 |
+
prompt=language_instruction,
|
226 |
+
phrases=phrase_list,
|
227 |
+
images=image_list,
|
228 |
+
locations=location_list,
|
229 |
+
alpha_type=[alpha_sample, 0, 1.0 - alpha_sample],
|
230 |
+
has_text_mask=has_text_mask,
|
231 |
+
has_image_mask=has_image_mask,
|
232 |
+
save_folder_name=language_instruction,
|
233 |
+
guidance_scale=guidance_scale,
|
234 |
+
batch_size=batch_size,
|
235 |
+
fix_seed=bool(fix_seed),
|
236 |
+
rand_seed=int(rand_seed),
|
237 |
+
actual_mask=actual_mask,
|
238 |
+
inpainting_boxes_nodrop=inpainting_boxes_nodrop,
|
239 |
+
)
|
240 |
+
|
241 |
+
get_model = partial(instance.get_model,
|
242 |
+
batch_size=batch_size,
|
243 |
+
instruction=language_instruction,
|
244 |
+
phrase_list=phrase_list)
|
245 |
+
|
246 |
+
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
247 |
+
if task == 'Grounded Generation':
|
248 |
+
if style_image == None:
|
249 |
+
return grounded_generation_box(get_model('base'), instruction, *args, **kwargs)
|
250 |
+
else:
|
251 |
+
return grounded_generation_box(get_model('style'), instruction, *args, **kwargs)
|
252 |
+
elif task == 'Grounded Inpainting':
|
253 |
+
assert image is not None
|
254 |
+
instruction['input_image'] = image.convert("RGB")
|
255 |
+
return grounded_generation_box(get_model('inpaint'), instruction, *args, **kwargs)
|
256 |
+
|
257 |
+
|
258 |
+
def draw_box(boxes=[], texts=[], img=None):
|
259 |
+
if len(boxes) == 0 and img is None:
|
260 |
+
return None
|
261 |
+
|
262 |
+
if img is None:
|
263 |
+
img = Image.new('RGB', (512, 512), (255, 255, 255))
|
264 |
+
colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
|
265 |
+
draw = ImageDraw.Draw(img)
|
266 |
+
font = ImageFont.truetype("DejaVuSansMono.ttf", size=18)
|
267 |
+
print(boxes)
|
268 |
+
for bid, box in enumerate(boxes):
|
269 |
+
draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
|
270 |
+
anno_text = texts[bid]
|
271 |
+
draw.rectangle(
|
272 |
+
[box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]],
|
273 |
+
outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
|
274 |
+
draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size * 1.2)], anno_text, font=font,
|
275 |
+
fill=(255, 255, 255))
|
276 |
+
return img
|
277 |
+
|
278 |
+
|
279 |
+
def get_concat(ims):
|
280 |
+
if len(ims) == 1:
|
281 |
+
n_col = 1
|
282 |
+
else:
|
283 |
+
n_col = 2
|
284 |
+
n_row = math.ceil(len(ims) / 2)
|
285 |
+
dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
|
286 |
+
for i, im in enumerate(ims):
|
287 |
+
row_id = i // n_col
|
288 |
+
col_id = i % n_col
|
289 |
+
dst.paste(im, (im.width * col_id, im.height * row_id))
|
290 |
+
return dst
|
291 |
+
|
292 |
+
|
293 |
+
def auto_append_grounding(language_instruction, grounding_texts):
|
294 |
+
for grounding_text in grounding_texts:
|
295 |
+
if grounding_text not in language_instruction and grounding_text != 'auto':
|
296 |
+
language_instruction += "; " + grounding_text
|
297 |
+
return language_instruction
|
298 |
+
|
299 |
+
|
300 |
+
def generate(task, language_instruction, grounding_texts, sketch_pad,
|
301 |
+
alpha_sample, guidance_scale, batch_size,
|
302 |
+
fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image,
|
303 |
+
state):
|
304 |
+
if 'boxes' not in state:
|
305 |
+
state['boxes'] = []
|
306 |
+
|
307 |
+
boxes = state['boxes']
|
308 |
+
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
|
309 |
+
# assert len(boxes) == len(grounding_texts)
|
310 |
+
if len(boxes) != len(grounding_texts):
|
311 |
+
if len(boxes) < len(grounding_texts):
|
312 |
+
raise ValueError("""The number of boxes should be equal to the number of grounding objects.
|
313 |
+
Number of boxes drawn: {}, number of grounding tokens: {}.
|
314 |
+
Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))
|
315 |
+
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
|
316 |
+
|
317 |
+
boxes = (np.asarray(boxes) / 512).tolist()
|
318 |
+
grounding_instruction = json.dumps({obj: box for obj, box in zip(grounding_texts, boxes)})
|
319 |
+
|
320 |
+
image = None
|
321 |
+
actual_mask = None
|
322 |
+
if task == 'Grounded Inpainting':
|
323 |
+
image = state.get('original_image', sketch_pad['image']).copy()
|
324 |
+
image = center_crop(image)
|
325 |
+
image = Image.fromarray(image)
|
326 |
+
|
327 |
+
if use_actual_mask:
|
328 |
+
actual_mask = sketch_pad['mask'].copy()
|
329 |
+
if actual_mask.ndim == 3:
|
330 |
+
actual_mask = actual_mask[..., 0]
|
331 |
+
actual_mask = center_crop(actual_mask, tgt_size=(64, 64))
|
332 |
+
actual_mask = torch.from_numpy(actual_mask == 0).float()
|
333 |
+
|
334 |
+
if state.get('inpaint_hw', None):
|
335 |
+
boxes = np.asarray(boxes) * 0.9 + 0.05
|
336 |
+
boxes = boxes.tolist()
|
337 |
+
grounding_instruction = json.dumps({obj: box for obj, box in zip(grounding_texts, boxes) if obj != 'auto'})
|
338 |
+
|
339 |
+
if append_grounding:
|
340 |
+
language_instruction = auto_append_grounding(language_instruction, grounding_texts)
|
341 |
+
|
342 |
+
gen_images, gen_overlays = inference(
|
343 |
+
task, language_instruction, grounding_instruction, boxes, image,
|
344 |
+
alpha_sample, guidance_scale, batch_size,
|
345 |
+
fix_seed, rand_seed, actual_mask, style_cond_image, clip_model=clip_model,
|
346 |
+
)
|
347 |
+
|
348 |
+
for idx, gen_image in enumerate(gen_images):
|
349 |
+
|
350 |
+
if task == 'Grounded Inpainting' and state.get('inpaint_hw', None):
|
351 |
+
hw = min(*state['original_image'].shape[:2])
|
352 |
+
gen_image = sized_center_fill(state['original_image'].copy(), np.array(gen_image.resize((hw, hw))), hw, hw)
|
353 |
+
gen_image = Image.fromarray(gen_image)
|
354 |
+
|
355 |
+
gen_images[idx] = gen_image
|
356 |
+
|
357 |
+
blank_samples = batch_size % 2 if batch_size > 1 else 0
|
358 |
+
gen_images = [gr.Image.update(value=x, visible=True) for i, x in enumerate(gen_images)] \
|
359 |
+
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
|
360 |
+
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
|
361 |
+
|
362 |
+
return gen_images + [state]
|
363 |
+
|
364 |
+
|
365 |
+
def binarize(x):
|
366 |
+
return (x != 0).astype('uint8') * 255
|
367 |
+
|
368 |
+
|
369 |
+
def sized_center_crop(img, cropx, cropy):
|
370 |
+
y, x = img.shape[:2]
|
371 |
+
startx = x // 2 - (cropx // 2)
|
372 |
+
starty = y // 2 - (cropy // 2)
|
373 |
+
return img[starty:starty + cropy, startx:startx + cropx]
|
374 |
+
|
375 |
+
|
376 |
+
def sized_center_fill(img, fill, cropx, cropy):
|
377 |
+
y, x = img.shape[:2]
|
378 |
+
startx = x // 2 - (cropx // 2)
|
379 |
+
starty = y // 2 - (cropy // 2)
|
380 |
+
img[starty:starty + cropy, startx:startx + cropx] = fill
|
381 |
+
return img
|
382 |
+
|
383 |
+
|
384 |
+
def sized_center_mask(img, cropx, cropy):
|
385 |
+
y, x = img.shape[:2]
|
386 |
+
startx = x // 2 - (cropx // 2)
|
387 |
+
starty = y // 2 - (cropy // 2)
|
388 |
+
center_region = img[starty:starty + cropy, startx:startx + cropx].copy()
|
389 |
+
img = (img * 0.2).astype('uint8')
|
390 |
+
img[starty:starty + cropy, startx:startx + cropx] = center_region
|
391 |
+
return img
|
392 |
+
|
393 |
+
|
394 |
+
def center_crop(img, HW=None, tgt_size=(512, 512)):
|
395 |
+
if HW is None:
|
396 |
+
H, W = img.shape[:2]
|
397 |
+
HW = min(H, W)
|
398 |
+
img = sized_center_crop(img, HW, HW)
|
399 |
+
img = Image.fromarray(img)
|
400 |
+
img = img.resize(tgt_size)
|
401 |
+
return np.array(img)
|
402 |
+
|
403 |
+
|
404 |
+
def draw(task, input, grounding_texts, new_image_trigger, state):
|
405 |
+
if type(input) == dict:
|
406 |
+
image = input['image']
|
407 |
+
mask = input['mask']
|
408 |
+
else:
|
409 |
+
mask = input
|
410 |
+
|
411 |
+
if mask.ndim == 3:
|
412 |
+
mask = mask[..., 0]
|
413 |
+
|
414 |
+
image_scale = 1.0
|
415 |
+
|
416 |
+
# resize trigger
|
417 |
+
if task == "Grounded Inpainting":
|
418 |
+
mask_cond = mask.sum() == 0
|
419 |
+
# size_cond = mask.shape != (512, 512)
|
420 |
+
if mask_cond and 'original_image' not in state:
|
421 |
+
image = Image.fromarray(image)
|
422 |
+
width, height = image.size
|
423 |
+
scale = 600 / min(width, height)
|
424 |
+
image = image.resize((int(width * scale), int(height * scale)))
|
425 |
+
state['original_image'] = np.array(image).copy()
|
426 |
+
image_scale = float(height / width)
|
427 |
+
return [None, new_image_trigger + 1, image_scale, state]
|
428 |
+
else:
|
429 |
+
original_image = state['original_image']
|
430 |
+
H, W = original_image.shape[:2]
|
431 |
+
image_scale = float(H / W)
|
432 |
+
|
433 |
+
mask = binarize(mask)
|
434 |
+
if mask.shape != (512, 512):
|
435 |
+
# assert False, "should not receive any non- 512x512 masks."
|
436 |
+
if 'original_image' in state and state['original_image'].shape[:2] == mask.shape:
|
437 |
+
mask = center_crop(mask, state['inpaint_hw'])
|
438 |
+
image = center_crop(state['original_image'], state['inpaint_hw'])
|
439 |
+
else:
|
440 |
+
mask = np.zeros((512, 512), dtype=np.uint8)
|
441 |
+
# mask = center_crop(mask)
|
442 |
+
mask = binarize(mask)
|
443 |
+
|
444 |
+
if type(mask) != np.ndarray:
|
445 |
+
mask = np.array(mask)
|
446 |
+
|
447 |
+
if mask.sum() == 0 and task != "Grounded Inpainting":
|
448 |
+
state = {}
|
449 |
+
|
450 |
+
if task != 'Grounded Inpainting':
|
451 |
+
image = None
|
452 |
+
else:
|
453 |
+
image = Image.fromarray(image)
|
454 |
+
|
455 |
+
if 'boxes' not in state:
|
456 |
+
state['boxes'] = []
|
457 |
+
|
458 |
+
if 'masks' not in state or len(state['masks']) == 0:
|
459 |
+
state['masks'] = []
|
460 |
+
last_mask = np.zeros_like(mask)
|
461 |
+
else:
|
462 |
+
last_mask = state['masks'][-1]
|
463 |
+
|
464 |
+
if type(mask) == np.ndarray and mask.size > 1:
|
465 |
+
diff_mask = mask - last_mask
|
466 |
+
else:
|
467 |
+
diff_mask = np.zeros([])
|
468 |
+
|
469 |
+
if diff_mask.sum() > 0:
|
470 |
+
x1x2 = np.where(diff_mask.max(0) != 0)[0]
|
471 |
+
y1y2 = np.where(diff_mask.max(1) != 0)[0]
|
472 |
+
y1, y2 = y1y2.min(), y1y2.max()
|
473 |
+
x1, x2 = x1x2.min(), x1x2.max()
|
474 |
+
|
475 |
+
if (x2 - x1 > 5) and (y2 - y1 > 5):
|
476 |
+
state['masks'].append(mask.copy())
|
477 |
+
state['boxes'].append((x1, y1, x2, y2))
|
478 |
+
|
479 |
+
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
|
480 |
+
grounding_texts = [x for x in grounding_texts if len(x) > 0]
|
481 |
+
if len(grounding_texts) < len(state['boxes']):
|
482 |
+
grounding_texts += [f'Obj. {bid + 1}' for bid in range(len(grounding_texts), len(state['boxes']))]
|
483 |
+
print("state", state)
|
484 |
+
box_image = draw_box(state['boxes'], grounding_texts, image)
|
485 |
+
|
486 |
+
if box_image is not None and state.get('inpaint_hw', None):
|
487 |
+
inpaint_hw = state['inpaint_hw']
|
488 |
+
box_image_resize = np.array(box_image.resize((inpaint_hw, inpaint_hw)))
|
489 |
+
original_image = state['original_image'].copy()
|
490 |
+
box_image = sized_center_fill(original_image, box_image_resize, inpaint_hw, inpaint_hw)
|
491 |
+
print(box_image, new_image_trigger, image_scale, state)
|
492 |
+
return [box_image, new_image_trigger, image_scale, state]
|
493 |
+
|
494 |
+
|
495 |
+
def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False):
|
496 |
+
if task != 'Grounded Inpainting':
|
497 |
+
sketch_pad_trigger = sketch_pad_trigger + 1
|
498 |
+
blank_samples = batch_size % 2 if batch_size > 1 else 0
|
499 |
+
out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] \
|
500 |
+
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
|
501 |
+
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
|
502 |
+
state = {}
|
503 |
+
return [None, sketch_pad_trigger, None, 1.0] + out_images + [state]
|
504 |
+
|
505 |
+
|
506 |
+
css = """
|
507 |
+
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
|
508 |
+
{
|
509 |
+
height: var(--height) !important;
|
510 |
+
max-height: var(--height) !important;
|
511 |
+
min-height: var(--height) !important;
|
512 |
+
}
|
513 |
+
#paper-info a {
|
514 |
+
color:#008AD7;
|
515 |
+
text-decoration: none;
|
516 |
+
}
|
517 |
+
#paper-info a:hover {
|
518 |
+
cursor: pointer;
|
519 |
+
text-decoration: none;
|
520 |
+
}
|
521 |
+
"""
|
522 |
+
|
523 |
+
rescale_js = """
|
524 |
+
function(x) {
|
525 |
+
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
|
526 |
+
let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
|
527 |
+
const image_width = root.querySelector('#img2img_image').clientWidth;
|
528 |
+
const target_height = parseInt(image_width * image_scale);
|
529 |
+
document.body.style.setProperty('--height', `${target_height}px`);
|
530 |
+
root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
|
531 |
+
root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
|
532 |
+
return x;
|
533 |
+
}
|
534 |
+
"""
|
535 |
+
|
536 |
+
with Blocks(
|
537 |
+
css=css,
|
538 |
+
analytics_enabled=False,
|
539 |
+
title="GLIGen demo",
|
540 |
+
) as main:
|
541 |
+
description = """<p style="text-align: center; font-weight: bold;">
|
542 |
+
<span style="font-size: 28px">Layout Guidance</span>
|
543 |
+
<br>
|
544 |
+
<span style="font-size: 18px" id="paper-info">
|
545 |
+
[<a href="https://gligen.github.io" target="_blank">Project Page</a>]
|
546 |
+
[<a href="https://arxiv.org/abs/2301.07093" target="_blank">Paper</a>]
|
547 |
+
[<a href="https://github.com/gligen/GLIGEN" target="_blank">GitHub</a>]
|
548 |
+
[<a href="https://huggingface.co/spaces/gligen/demo_legacy" target="_blank">Mirror</a>]
|
549 |
+
</span>
|
550 |
+
</p>
|
551 |
+
"""
|
552 |
+
gr.HTML(description)
|
553 |
+
|
554 |
+
with gr.Row():
|
555 |
+
with gr.Column(scale=4):
|
556 |
+
sketch_pad_trigger = gr.Number(value=0, visible=False)
|
557 |
+
sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
|
558 |
+
init_white_trigger = gr.Number(value=0, visible=False)
|
559 |
+
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
|
560 |
+
new_image_trigger = gr.Number(value=0, visible=False)
|
561 |
+
|
562 |
+
# task = gr.Radio(
|
563 |
+
# choices=["Grounded Generation", 'Grounded Inpainting'],
|
564 |
+
# type="value",
|
565 |
+
# value="Grounded Generation",
|
566 |
+
# label="Task",
|
567 |
+
# )
|
568 |
+
language_instruction = gr.Textbox(
|
569 |
+
label="Text Caption",
|
570 |
+
)
|
571 |
+
grounding_instruction = gr.Textbox(
|
572 |
+
label="Grounding instruction (Separated by semicolon)",
|
573 |
+
)
|
574 |
+
with gr.Row():
|
575 |
+
sketch_pad = ImageMask(label="Sketch Pad", elem_id="img2img_image")
|
576 |
+
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
|
577 |
+
with gr.Row():
|
578 |
+
clear_btn = gr.Button(value='Clear')
|
579 |
+
gen_btn = gr.Button(value='Generate')
|
580 |
+
with gr.Accordion("Advanced Options", open=False):
|
581 |
+
with gr.Column():
|
582 |
+
Loss_scale = gr.Slider(minimum=0, maximum=500, step=5, value=30,
|
583 |
+
label="Loss Scale Factor")
|
584 |
+
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
|
585 |
+
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=2, label="Number of Samples")
|
586 |
+
max_iter = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Max Iteration per Step")
|
587 |
+
loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss Threshold")
|
588 |
+
max_step = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Max Step of Backward Guidance")
|
589 |
+
|
590 |
+
# append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption")
|
591 |
+
# use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
|
592 |
+
with gr.Row():
|
593 |
+
fix_seed = gr.Checkbox(value=True, label="Fixed seed")
|
594 |
+
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed")
|
595 |
+
|
596 |
+
with gr.Column(scale=4):
|
597 |
+
gr.HTML('<span style="font-size: 20px; font-weight: bold">Generated Images</span>')
|
598 |
+
with gr.Row():
|
599 |
+
out_gen_1 = gr.Image(type="pil", visible=True, show_label=False, label="Generated Image")
|
600 |
+
out_gen_2 = gr.Image(type="pil", visible=True, show_label=False)
|
601 |
+
with gr.Row():
|
602 |
+
out_gen_3 = gr.Image(type="pil", visible=False, show_label=False)
|
603 |
+
out_gen_4 = gr.Image(type="pil", visible=False, show_label=False)
|
604 |
+
|
605 |
+
state = gr.State({})
|
606 |
+
|
607 |
+
|
608 |
+
class Controller:
|
609 |
+
def __init__(self):
|
610 |
+
self.calls = 0
|
611 |
+
self.tracks = 0
|
612 |
+
self.resizes = 0
|
613 |
+
self.scales = 0
|
614 |
+
|
615 |
+
def init_white(self, init_white_trigger):
|
616 |
+
self.calls += 1
|
617 |
+
return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger + 1
|
618 |
+
|
619 |
+
def change_n_samples(self, n_samples):
|
620 |
+
blank_samples = n_samples % 2 if n_samples > 1 else 0
|
621 |
+
return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
|
622 |
+
+ [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)]
|
623 |
+
|
624 |
+
def resize_centercrop(self, state):
|
625 |
+
self.resizes += 1
|
626 |
+
image = state['original_image'].copy()
|
627 |
+
inpaint_hw = int(0.9 * min(*image.shape[:2]))
|
628 |
+
state['inpaint_hw'] = inpaint_hw
|
629 |
+
image_cc = center_crop(image, inpaint_hw)
|
630 |
+
# print(f'resize triggered {self.resizes}', image.shape, '->', image_cc.shape)
|
631 |
+
return image_cc, state
|
632 |
+
|
633 |
+
def resize_masked(self, state):
|
634 |
+
self.resizes += 1
|
635 |
+
image = state['original_image'].copy()
|
636 |
+
inpaint_hw = int(0.9 * min(*image.shape[:2]))
|
637 |
+
state['inpaint_hw'] = inpaint_hw
|
638 |
+
image_mask = sized_center_mask(image, inpaint_hw, inpaint_hw)
|
639 |
+
state['masked_image'] = image_mask.copy()
|
640 |
+
# print(f'mask triggered {self.resizes}')
|
641 |
+
return image_mask, state
|
642 |
+
|
643 |
+
def switch_task_hide_cond(self, task):
|
644 |
+
cond = False
|
645 |
+
if task == "Grounded Generation":
|
646 |
+
cond = True
|
647 |
+
|
648 |
+
return gr.Checkbox.update(visible=cond, value=False), gr.Image.update(value=None,
|
649 |
+
visible=False), gr.Slider.update(
|
650 |
+
visible=cond), gr.Checkbox.update(visible=(not cond), value=False)
|
651 |
+
|
652 |
+
|
653 |
+
controller = Controller()
|
654 |
+
main.load(
|
655 |
+
lambda x: x + 1,
|
656 |
+
inputs=sketch_pad_trigger,
|
657 |
+
outputs=sketch_pad_trigger,
|
658 |
+
queue=False)
|
659 |
+
sketch_pad.edit(
|
660 |
+
draw,
|
661 |
+
inputs=[sketch_pad, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
|
662 |
+
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
|
663 |
+
queue=False,
|
664 |
+
)
|
665 |
+
grounding_instruction.change(
|
666 |
+
draw,
|
667 |
+
inputs=[sketch_pad, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
|
668 |
+
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
|
669 |
+
queue=False,
|
670 |
+
)
|
671 |
+
clear_btn.click(
|
672 |
+
clear,
|
673 |
+
inputs=[sketch_pad_trigger, sketch_pad_trigger, batch_size, state],
|
674 |
+
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3,
|
675 |
+
out_gen_4, state],
|
676 |
+
queue=False)
|
677 |
+
# task.change(
|
678 |
+
# partial(clear, switch_task=True),
|
679 |
+
# inputs=[task, sketch_pad_trigger, batch_size, state],
|
680 |
+
# outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3,
|
681 |
+
# out_gen_4, state],
|
682 |
+
# queue=False)
|
683 |
+
sketch_pad_trigger.change(
|
684 |
+
controller.init_white,
|
685 |
+
inputs=[init_white_trigger],
|
686 |
+
outputs=[sketch_pad, image_scale, init_white_trigger],
|
687 |
+
queue=False)
|
688 |
+
sketch_pad_resize_trigger.change(
|
689 |
+
controller.resize_masked,
|
690 |
+
inputs=[state],
|
691 |
+
outputs=[sketch_pad, state],
|
692 |
+
queue=False)
|
693 |
+
batch_size.change(
|
694 |
+
controller.change_n_samples,
|
695 |
+
inputs=[batch_size],
|
696 |
+
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4],
|
697 |
+
queue=False)
|
698 |
+
|
699 |
+
batch_size.change(
|
700 |
+
controller.change_n_samples,
|
701 |
+
inputs=[batch_size],
|
702 |
+
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4],
|
703 |
+
queue=False)
|
704 |
+
|
705 |
+
gen_btn.click(
|
706 |
+
generate,
|
707 |
+
inputs=[
|
708 |
+
language_instruction, language_instruction, grounding_instruction, sketch_pad,
|
709 |
+
loss_threshold, guidance_scale, batch_size,
|
710 |
+
fix_seed, rand_seed,
|
711 |
+
max_step,
|
712 |
+
Loss_scale, max_iter,
|
713 |
+
state,
|
714 |
+
],
|
715 |
+
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
|
716 |
+
queue=True
|
717 |
+
)
|
718 |
+
sketch_pad_resize_trigger.change(
|
719 |
+
None,
|
720 |
+
None,
|
721 |
+
sketch_pad_resize_trigger,
|
722 |
+
_js=rescale_js,
|
723 |
+
queue=False)
|
724 |
+
init_white_trigger.change(
|
725 |
+
None,
|
726 |
+
None,
|
727 |
+
init_white_trigger,
|
728 |
+
_js=rescale_js,
|
729 |
+
queue=False)
|
730 |
+
|
731 |
+
with gr.Column():
|
732 |
+
gr.Examples(
|
733 |
+
examples=[
|
734 |
+
[
|
735 |
+
"images/input.png",
|
736 |
+
"A hello kitty toy is playing with a purple ball.",
|
737 |
+
"hello kitty;ball",
|
738 |
+
"images/hello_kitty_results.png"
|
739 |
+
],
|
740 |
+
],
|
741 |
+
inputs=[sketch_pad, language_instruction, grounding_instruction, out_gen_1],
|
742 |
+
outputs=None,
|
743 |
+
fn=None,
|
744 |
+
cache_examples=False,
|
745 |
+
)
|
746 |
+
|
747 |
+
main.queue(concurrency_count=1, api_open=False)
|
748 |
+
main.launch(share=False, show_api=False, show_error=True)
|
images/hello_kitty_results.png
ADDED
images/input.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.13.1
|
2 |
+
torchvision==0.14.1
|
3 |
+
xformers==0.0.16
|
4 |
+
omegaconf==2.1.1
|
5 |
+
albumentations==1.3.0
|
6 |
+
opencv-python
|
7 |
+
imageio==2.9.0
|
8 |
+
imageio-ffmpeg==0.4.2
|
9 |
+
pytorch-lightning==1.4.2
|
10 |
+
test-tube>=0.7.5
|
11 |
+
streamlit==1.17.0
|
12 |
+
einops==0.3.0
|
13 |
+
git+https://github.com/openai/CLIP.git
|
14 |
+
protobuf~=3.20.1
|
15 |
+
torchmetrics==0.6.0
|
16 |
+
transformers==4.19.2
|
17 |
+
kornia==0.6.0
|
18 |
+
gradio==3.19.1
|