Spaces:
Paused
Paused
File size: 22,504 Bytes
09ce3f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
# !pip install diffusers["torch"] transformers
import hydra
import torch
import yaml
from diffusers import StableDiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel
import torch.nn.functional as F
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import torch.nn as nn
import time
from accelerate import Accelerator
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
from omegaconf import DictConfig, OmegaConf
from datetime import datetime
import logging
import itertools
from torch.utils.data import DataLoader
from tqdm import tqdm
from diffusers import LMSDiscreteScheduler
from diffusers.optimization import get_scheduler
from torch import autocast
from torch.cuda.amp import GradScaler
import pdb
import math
from my_model import unet_2d_condition
from typing import Iterable, Optional
import os
import json
import numpy as np
import scipy
def freeze_params(params):
for param in params:
param.requires_grad = False
def unfreeze_params(params):
for param in params:
param.requires_grad = True
class EMAModel:
"""
Exponential Moving Average of models weights
"""
def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999):
parameters = list(parameters)
print("list parameters")
self.shadow_params = [p.clone().detach() for p in parameters]
print("finish clone parameters")
self.decay = decay
self.optimization_step = 0
def get_decay(self, optimization_step):
"""
Compute the decay factor for the exponential moving average.
"""
value = (1 + optimization_step) / (10 + optimization_step)
return 1 - min(self.decay, value)
@torch.no_grad()
def step(self, parameters):
parameters = list(parameters)
self.optimization_step += 1
self.decay = self.get_decay(self.optimization_step)
for s_param, param in zip(self.shadow_params, parameters):
if param.requires_grad:
tmp = self.decay * (s_param - param)
s_param.sub_(tmp)
else:
s_param.copy_(param)
torch.cuda.empty_cache()
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
"""
Copy current averaged parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages. If `None`, the
parameters with which this `ExponentialMovingAverage` was
initialized will be used.
"""
parameters = list(parameters)
for s_param, param in zip(self.shadow_params, parameters):
param.data.copy_(s_param.data)
def to(self, device=None, dtype=None) -> None:
r"""c"""
# .to() on the tensors handles None correctly
self.shadow_params = [
p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
for p in self.shadow_params
]
def compute_visor_loss(attn_maps_mid, attn_maps_up, obj_a_positions, obj_b_positions, relationship):
loss = 0
for attn_map_integrated in attn_maps_mid:
attn_map = attn_map_integrated.chunk(2)[1]
#
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
weight_matrix_x = torch.zeros(size=(H, W)).cuda()
weight_matrix_y = torch.zeros(size=(H, W)).cuda()
for x_indx in range(W):
weight_matrix_x[:, x_indx] = x_indx
for y_indx in range(H):
weight_matrix_y[y_indx, :] = y_indx
# for obj_idx in range(object_number):
#
# bbox = bboxes[obj_idx]
obj_a_avg_x_total = 0
obj_a_avg_y_total = 0
for obj_a_position in obj_a_positions:
ca_map_obj = attn_map[:, :, obj_a_position].reshape(b, H, W)
# pdb.set_trace()
obj_a_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
obj_a_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
obj_a_avg_x_total += obj_a_avg_x
obj_a_avg_y_total += obj_a_avg_y
obj_a_avg_x_total = (obj_a_avg_x_total/len(obj_a_positions)).mean() / W
obj_a_avg_y_total = (obj_a_avg_y_total/len(obj_a_positions)).mean() / H
print('mid: obj_a_avg_x_total', obj_a_avg_x_total)
obj_b_avg_x_total = 0
obj_b_avg_y_total = 0
for obj_b_position in obj_b_positions:
ca_map_obj = attn_map[:, :, obj_b_position].reshape(b, H, W)
obj_b_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
obj_b_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1)
obj_b_avg_x_total += obj_b_avg_x
obj_b_avg_y_total += obj_b_avg_y
obj_b_avg_x_total = (obj_b_avg_x_total/len(obj_b_positions)).mean() / W
obj_b_avg_y_total = (obj_b_avg_y_total/len(obj_b_positions)).mean() / H
print('mid: obj_b_avg_x_total', obj_b_avg_x_total)
if relationship == 0:
loss += (obj_b_avg_x_total - obj_a_avg_x_total)
elif relationship == 1:
loss += (obj_a_avg_x_total - obj_b_avg_x_total)
elif relationship == 2:
loss += (obj_b_avg_y_total - obj_a_avg_y_total)
elif relationship == 3:
loss += (obj_a_avg_y_total - obj_b_avg_y_total)
for attn_map_integrated in attn_maps_up[0]:
attn_map = attn_map_integrated.chunk(2)[1]
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
weight_matrix_x = torch.zeros(size=(H, W)).cuda()
weight_matrix_y = torch.zeros(size=(H, W)).cuda()
for x_indx in range(W):
weight_matrix_x[:, x_indx] = x_indx
for y_indx in range(H):
weight_matrix_y[y_indx, :] = y_indx
# for obj_idx in range(object_number):
#
# bbox = bboxes[obj_idx]
obj_a_avg_x_total = 0
obj_a_avg_y_total = 0
for obj_a_position in obj_a_positions:
ca_map_obj = attn_map[:, :, obj_a_position].reshape(b, H, W)
obj_a_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
obj_a_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
obj_a_avg_x_total += obj_a_avg_x
obj_a_avg_y_total += obj_a_avg_y
obj_a_avg_x_total = (obj_a_avg_x_total / len(obj_a_positions)).mean() / W
obj_a_avg_y_total = (obj_a_avg_y_total / len(obj_a_positions)).mean() / H
print('up: obj_a_avg_x_total', obj_a_avg_x_total)
obj_b_avg_x_total = 0
obj_b_avg_y_total = 0
for obj_b_position in obj_b_positions:
ca_map_obj = attn_map[:, :, obj_b_position].reshape(b, H, W)
obj_b_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
obj_b_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1)
obj_b_avg_x_total += obj_b_avg_x
obj_b_avg_y_total += obj_b_avg_y
obj_b_avg_x_total = (obj_b_avg_x_total / len(obj_b_positions)).mean() / W
obj_b_avg_y_total = (obj_b_avg_y_total / len(obj_b_positions)).mean() / H
print('up: obj_b_avg_x_total', obj_b_avg_x_total)
if relationship == 0:
loss += (obj_a_avg_x_total - obj_b_avg_x_total)
elif relationship == 1:
loss += (obj_b_avg_x_total - obj_a_avg_x_total)
elif relationship == 2:
loss += (obj_a_avg_y_total - obj_b_avg_y_total)
elif relationship == 3:
loss += (obj_b_avg_y_total - obj_a_avg_y_total)
loss = loss / (len(attn_maps_up[0]) + len(attn_maps_mid))
return loss
@hydra.main(version_base=None, config_path="conf", config_name="config_visor_box")
def train(cfg: DictConfig):
# fix the randomness of torch
print(cfg)
with open('./conf/unet/origin_config.json') as f:
unet_config = json.load(f)
unet = unet_2d_condition.UNet2DConditionModel(**unet_config)
# ckp = torch.load('/Users/shil5883/Downloads/diffusion_pytorch_model.bin', map_location='cpu')
# prev_attn_map = torch.load('./attn_map.ckp', map_location='cpu')
ckp = torch.load('/work/minghao/chess_gen/diffusion_pytorch_model.bin', map_location='cpu')
prev_attn_map = torch.load('/work/minghao/chess_gen/visual_attn/2023-02-02/15-05-51/epoch_100_sche_constant_lr_1e-06_ac_1/attn_map.ckp', map_location='cpu')
# prev_attn_map = torch.load('/work/minghao/chess_gen/visual_attn/2023-01-16/18-58-12/epoch_100_sche_constant_lr_1e-06_ac_1/attn_map.ckp', map_location='cpu')
unet.load_state_dict(ckp)
unet_original = UNet2DConditionModel(**unet_config)
unet_original.load_state_dict(ckp)
date_now, time_now = datetime.now().strftime("%Y-%m-%d,%H-%M-%S").split(',')
# cfg.general.save_path = os.path.join(cfg.general.save_path, date_now, time_now)
# if not os.path.exists(cfg.general.save_path ):
# os.makedirs(cfg.general.save_path)
# cfg.general.save_path
mixed_precision = 'fp16' if torch.cuda.is_available() else 'no'
accelerator = Accelerator(
gradient_accumulation_steps=cfg.training.accumulate_step,
mixed_precision=mixed_precision,
log_with="tensorboard",
logging_dir='./',
)
# initialize dataset and dataloader
if accelerator.is_main_process:
print("Loading the dataset!!!!!")
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
# train_dataset = ICLEVERDataset(cfg.data.data_path, tokenizer, cfg, prefix='train')
# val_dataset = ICLEVERDataset(cfg.data.data_path, tokenizer, cfg, prefix='val')
# train_loader = DataLoader(train_dataset, batch_size=cfg.training.batch_size, shuffle=True, num_workers=2, pin_memory=False)
# val_loader = DataLoader(val_dataset, batch_size=cfg.training.batch_size * 2, shuffle=True, num_workers=2, pin_memory=False)
if accelerator.is_main_process:
print("Complete loading the dataset!!!!!")
if accelerator.is_main_process:
print("Complete load the noise scheduler!!!!!")
with open("config.yaml", "w") as f:
OmegaConf.save(cfg, f)
if not os.path.exists(cfg.general.save_path) and accelerator.is_main_process:
os.makedirs(cfg.general.save_path)
if accelerator.is_main_process:
print("saved load the noise scheduler!!!!!")
# Move unet to device
device = "cuda" if torch.cuda.is_available() else "cpu"
# load pretrained models and schedular
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
# boards_embedder.to(device)
if accelerator.is_main_process:
print("move the model to device!!!!!")
# Keep vae and unet in eval model as we don't train these
# Initialize the optimizer
cfg.training.lr = (
cfg.training.lr * cfg.training.accumulate_step * cfg.training.batch_size * accelerator.num_processes
)
# Move vae and unet to device
vae.to(device)
unet.to(device)
text_encoder.to(device)
# prev_attn_map.to(device)
unet_original.to(device)
vae.eval()
unet.eval()
text_encoder.eval()
unet_original.eval()
# tokenizer.to(device)
# if accelerator.is_main_process:
print("prepare the accelerator module at process: {}!!!!!".format(accelerator.process_index))
# unet = accelerator.prepare(unet)
print("done the accelerator module at process: {}!!!!!".format(accelerator.process_index))
# Create EMA for the unet.
# if cfg.training.use_ema:
# ema_unet = EMAModel(unet.parameters())
# ema_encoder = EMAModel(boards_embedder.parameters())
ema_unet = None
# print(start_ema)
if cfg.training.use_ema:
if accelerator.is_main_process:
print("Using the EMA model!!!!!")
print("start EMA at process: {}!!!!!".format(accelerator.process_index))
ema_unet = EMAModel(unet.parameters())
# ema_encoder = EMAModel(boards_embedder.parameters())
# prompt = 'A traffic light below a sink'
templates = ['{} to the left of {}', '{} to the right of {}', '{} above {}', '{} below {}']
bboxes_template = [[0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 1.0, 0.5], [0.5, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0]]
bboxes_template_list = [[0, 2], [2, 0], [1, 3], [3, 1]]
iteration_start = cfg.inference.start_pair
iteration_now = iteration_start
iteration_interval = cfg.inference.iteration_interval
with open('./coco_paris.txt', 'r') as f:
image_pairs = f.readlines()
for image_pair in tqdm(image_pairs[iteration_start: iteration_start + iteration_interval]):
obj_a, obj_b = image_pair.strip().split(',')[0], image_pair.strip().split(',')[1]
obj_a = 'A {}'.format(obj_a) if obj_a[0] not in ['a', 'e', 'i', 'o', 'u'] else 'An {}'.format(obj_a)
obj_b = 'a {}'.format(obj_b) if obj_b[0] not in ['a', 'e', 'i', 'o', 'u'] else 'an {}'.format(obj_b)
for idx, template in enumerate(templates):
prompt = template.format(obj_a, obj_b)
obj_a_len = len(obj_a.split(' ')) - 1
obj_a_position = [2] if obj_a_len == 1 else [2, 3]
obj_b_position = [obj_a_len + 1 + len(template.split(' ')) + i for i in range(len(obj_b.split(' '))-1)]
obj_positions = [obj_a_position, obj_b_position]
obj_a_boxes = [bboxes_template[bboxes_template_list[idx][0]].copy() for _ in range(len(obj_a.split(' ')) - 1)]
obj_b_boxes = [bboxes_template[bboxes_template_list[idx][1]].copy() for _ in range(len(obj_b.split(' ')) - 1)]
obj_boxes = [obj_a_boxes, obj_b_boxes]
print(prompt, obj_positions, obj_boxes)
# for infer_iter in range(1):
inference(device, unet, unet_original, vae, tokenizer, text_encoder, prompt, cfg, prev_attn_map, bboxes=obj_boxes, object_positions=obj_positions, infer_iter=cfg.inference.infer_iter, pair_id=iteration_now)
obj_b, obj_a = image_pair.strip().split(',')[0], image_pair.strip().split(',')[1]
obj_a = 'A {}'.format(obj_a) if obj_a[0] not in ['a', 'e', 'i', 'o', 'u'] else 'An {}'.format(obj_a)
obj_b = 'a {}'.format(obj_b) if obj_b[0] not in ['a', 'e', 'i', 'o', 'u'] else 'an {}'.format(obj_b)
for idx, template in enumerate(templates):
prompt = template.format(obj_a, obj_b)
obj_a_len = len(obj_a.split(' ')) - 1
obj_a_position = [2] if obj_a_len == 1 else [2, 3]
obj_b_position = [obj_a_len + 1 + len(template.split(' ')) + i for i in range(len(obj_b.split(' '))-1)]
obj_positions = [obj_a_position, obj_b_position]
obj_a_boxes = [bboxes_template[bboxes_template_list[idx][0]].copy() for _ in range(len(obj_a.split(' ')) - 1)]
obj_b_boxes = [bboxes_template[bboxes_template_list[idx][1]].copy() for _ in range(len(obj_b.split(' ')) - 1)]
obj_boxes = [obj_a_boxes, obj_b_boxes]
print(prompt, obj_positions, obj_boxes)
inference(device, unet, unet_original, vae, tokenizer, text_encoder, prompt, cfg, prev_attn_map, bboxes=obj_boxes, object_positions=obj_positions, infer_iter=cfg.inference.infer_iter, pair_id=iteration_now)
iteration_now += 1
def compute_ca_loss(attn_maps_mid, attn_maps_up, bboxes, object_positions):
loss = 0
object_number = len(bboxes)
if object_number == 0:
return torch.tensor(0).float().cuda()
for attn_map_integrated in attn_maps_mid:
attn_map = attn_map_integrated.chunk(2)[1]
#
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# pdb.set_trace()
for obj_idx in range(object_number):
obj_loss = 0
mask = torch.zeros(size=(H, W)).cuda()
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1
for obj_position in object_positions[obj_idx]:
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
# ca_map_obj = attn_map[:, :, object_positions[obj_position]].reshape(b, H, W)
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1)/ca_map_obj.reshape(b, -1).sum(dim=-1)
obj_loss += torch.mean((1 - activation_value) ** 2)
loss += (obj_loss/len(object_positions[obj_idx]))
# print("??", obj_idx, obj_loss/len(object_positions[obj_idx]))
# compute loss on padding tokens
# activation_value = torch.zeros(size=(b, )).cuda()
# for obj_idx in range(object_number):
# bbox = bboxes[obj_idx]
# ca_map_obj = attn_map[:, :, padding_start:].reshape(b, H, W, -1)
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
#
# loss += torch.mean((1 - activation_value) ** 2)
for attn_map_integrated in attn_maps_up[0]:
attn_map = attn_map_integrated.chunk(2)[1]
#
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
for obj_idx in range(object_number):
obj_loss = 0
mask = torch.zeros(size=(H, W)).cuda()
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1
for obj_position in object_positions[obj_idx]:
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
# ca_map_obj = attn_map[:, :, object_positions[obj_position]].reshape(b, H, W)
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(
dim=-1)
obj_loss += torch.mean((1 - activation_value) ** 2)
loss += (obj_loss / len(object_positions[obj_idx]))
# compute loss on padding tokens
# activation_value = torch.zeros(size=(b, )).cuda()
# for obj_idx in range(object_number):
# bbox = bboxes[obj_idx]
# ca_map_obj = attn_map[:, :,padding_start:].reshape(b, H, W, -1)
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
#
# loss += torch.mean((1 - activation_value) ** 2)
loss = loss / (object_number * (len(attn_maps_up[0]) + len(attn_maps_mid)))
return loss
def plt_all_attn_map_in_one(attn_map_integrated_list_down, attn_map_integrated_list_mid, attn_map_integrated_list_up, image, prompt, cfg, t, prefix='all'):
prompt_split = prompt.split(' ')
prompt_len = len(prompt_split) + 4
total_layers = len(attn_map_integrated_list_down) + len(attn_map_integrated_list_mid) + len(attn_map_integrated_list_up)
fig, axs = plt.subplots(nrows=total_layers+1, ncols=prompt_len, figsize=(4 * prompt_len, 4 * total_layers))
fig.suptitle(prompt, fontsize=32)
fig.tight_layout()
cnt = 1
ax = axs[0][0]
ax.imshow(image)
for prompt_idx in range(prompt_len):
ax = axs[0][prompt_idx]
ax.set_axis_off()
for layer, attn_map_integrated in enumerate(attn_map_integrated_list_down):
attn_map_uncond, attn_map = attn_map_integrated.chunk(2)
grid_size = int(math.sqrt(attn_map.shape[1]))
for prompt_idx in range(prompt_len):
ax = axs[cnt][prompt_idx]
if prompt_idx == 0:
ax.set_ylabel('down {}'.format(layer), rotation=0, size='large')
mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy()
im = ax.imshow(mask, cmap='YlGn')
ax.set_axis_off()
cnt += 1
for layer, attn_map_integrated in enumerate(attn_map_integrated_list_mid):
attn_map_uncond, attn_map = attn_map_integrated.chunk(2)
grid_size = int(math.sqrt(attn_map.shape[1]))
for prompt_idx in range(prompt_len):
ax = axs[cnt][prompt_idx]
if prompt_idx ==0:
ax.set_ylabel('mid {}'.format(layer), rotation=0, size='large')
mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy()
im = ax.imshow(mask, cmap='YlGn')
ax.set_axis_off()
cnt += 1
for layer, attn_map_integrated in enumerate(attn_map_integrated_list_up):
attn_map_uncond, attn_map = attn_map_integrated.chunk(2)
grid_size = int(math.sqrt(attn_map.shape[1]))
for prompt_idx in range(prompt_len):
ax = axs[cnt][prompt_idx]
if prompt_idx ==0:
ax.set_ylabel('up {}'.format(layer), rotation=0, size='large')
mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy()
im = ax.imshow(mask, cmap='YlGn')
ax.set_axis_off()
cnt += 1
if not os.path.exists(cfg.general.save_path + "/{}".format(prefix)):
os.makedirs(cfg.general.save_path + "/{}".format(prefix))
plt.savefig(cfg.general.save_path + "/{}/step_{}.png".format(prefix, str(int(t)).zfill(4)))
# generate_video()
plt.close()
if __name__=="__main__":
train()
|