# !pip install diffusers["torch"] transformers import hydra import torch import yaml from diffusers import StableDiffusionPipeline from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel import torch.nn.functional as F from PIL import Image, ImageDraw, ImageFont import matplotlib.pyplot as plt import torch.nn as nn import time from accelerate import Accelerator import torchvision.transforms as transforms from torch.utils.tensorboard import SummaryWriter from omegaconf import DictConfig, OmegaConf from datetime import datetime import logging import itertools from torch.utils.data import DataLoader from tqdm import tqdm from diffusers import LMSDiscreteScheduler from diffusers.optimization import get_scheduler from torch import autocast from torch.cuda.amp import GradScaler import pdb import math from my_model import unet_2d_condition from typing import Iterable, Optional import os import json import numpy as np import scipy def freeze_params(params): for param in params: param.requires_grad = False def unfreeze_params(params): for param in params: param.requires_grad = True class EMAModel: """ Exponential Moving Average of models weights """ def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999): parameters = list(parameters) print("list parameters") self.shadow_params = [p.clone().detach() for p in parameters] print("finish clone parameters") self.decay = decay self.optimization_step = 0 def get_decay(self, optimization_step): """ Compute the decay factor for the exponential moving average. """ value = (1 + optimization_step) / (10 + optimization_step) return 1 - min(self.decay, value) @torch.no_grad() def step(self, parameters): parameters = list(parameters) self.optimization_step += 1 self.decay = self.get_decay(self.optimization_step) for s_param, param in zip(self.shadow_params, parameters): if param.requires_grad: tmp = self.decay * (s_param - param) s_param.sub_(tmp) else: s_param.copy_(param) torch.cuda.empty_cache() def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None: """ Copy current averaged parameters into given collection of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored moving averages. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = list(parameters) for s_param, param in zip(self.shadow_params, parameters): param.data.copy_(s_param.data) def to(self, device=None, dtype=None) -> None: r"""c""" # .to() on the tensors handles None correctly self.shadow_params = [ p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device) for p in self.shadow_params ] def compute_visor_loss(attn_maps_mid, attn_maps_up, obj_a_positions, obj_b_positions, relationship): loss = 0 for attn_map_integrated in attn_maps_mid: attn_map = attn_map_integrated.chunk(2)[1] # b, i, j = attn_map.shape H = W = int(math.sqrt(i)) weight_matrix_x = torch.zeros(size=(H, W)).cuda() weight_matrix_y = torch.zeros(size=(H, W)).cuda() for x_indx in range(W): weight_matrix_x[:, x_indx] = x_indx for y_indx in range(H): weight_matrix_y[y_indx, :] = y_indx # for obj_idx in range(object_number): # # bbox = bboxes[obj_idx] obj_a_avg_x_total = 0 obj_a_avg_y_total = 0 for obj_a_position in obj_a_positions: ca_map_obj = attn_map[:, :, obj_a_position].reshape(b, H, W) # pdb.set_trace() obj_a_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1) obj_a_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1) obj_a_avg_x_total += obj_a_avg_x obj_a_avg_y_total += obj_a_avg_y obj_a_avg_x_total = (obj_a_avg_x_total/len(obj_a_positions)).mean() / W obj_a_avg_y_total = (obj_a_avg_y_total/len(obj_a_positions)).mean() / H print('mid: obj_a_avg_x_total', obj_a_avg_x_total) obj_b_avg_x_total = 0 obj_b_avg_y_total = 0 for obj_b_position in obj_b_positions: ca_map_obj = attn_map[:, :, obj_b_position].reshape(b, H, W) obj_b_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1) obj_b_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1)/ca_map_obj.reshape(b,-1).sum(-1) obj_b_avg_x_total += obj_b_avg_x obj_b_avg_y_total += obj_b_avg_y obj_b_avg_x_total = (obj_b_avg_x_total/len(obj_b_positions)).mean() / W obj_b_avg_y_total = (obj_b_avg_y_total/len(obj_b_positions)).mean() / H print('mid: obj_b_avg_x_total', obj_b_avg_x_total) if relationship == 0: loss += (obj_b_avg_x_total - obj_a_avg_x_total) elif relationship == 1: loss += (obj_a_avg_x_total - obj_b_avg_x_total) elif relationship == 2: loss += (obj_b_avg_y_total - obj_a_avg_y_total) elif relationship == 3: loss += (obj_a_avg_y_total - obj_b_avg_y_total) for attn_map_integrated in attn_maps_up[0]: attn_map = attn_map_integrated.chunk(2)[1] b, i, j = attn_map.shape H = W = int(math.sqrt(i)) weight_matrix_x = torch.zeros(size=(H, W)).cuda() weight_matrix_y = torch.zeros(size=(H, W)).cuda() for x_indx in range(W): weight_matrix_x[:, x_indx] = x_indx for y_indx in range(H): weight_matrix_y[y_indx, :] = y_indx # for obj_idx in range(object_number): # # bbox = bboxes[obj_idx] obj_a_avg_x_total = 0 obj_a_avg_y_total = 0 for obj_a_position in obj_a_positions: ca_map_obj = attn_map[:, :, obj_a_position].reshape(b, H, W) obj_a_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1) obj_a_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1) obj_a_avg_x_total += obj_a_avg_x obj_a_avg_y_total += obj_a_avg_y obj_a_avg_x_total = (obj_a_avg_x_total / len(obj_a_positions)).mean() / W obj_a_avg_y_total = (obj_a_avg_y_total / len(obj_a_positions)).mean() / H print('up: obj_a_avg_x_total', obj_a_avg_x_total) obj_b_avg_x_total = 0 obj_b_avg_y_total = 0 for obj_b_position in obj_b_positions: ca_map_obj = attn_map[:, :, obj_b_position].reshape(b, H, W) obj_b_avg_x = (ca_map_obj * weight_matrix_x.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1) obj_b_avg_y = (ca_map_obj * weight_matrix_y.unsqueeze(0)).reshape(b, -1).sum(-1) / ca_map_obj.reshape(b, -1).sum(-1) obj_b_avg_x_total += obj_b_avg_x obj_b_avg_y_total += obj_b_avg_y obj_b_avg_x_total = (obj_b_avg_x_total / len(obj_b_positions)).mean() / W obj_b_avg_y_total = (obj_b_avg_y_total / len(obj_b_positions)).mean() / H print('up: obj_b_avg_x_total', obj_b_avg_x_total) if relationship == 0: loss += (obj_a_avg_x_total - obj_b_avg_x_total) elif relationship == 1: loss += (obj_b_avg_x_total - obj_a_avg_x_total) elif relationship == 2: loss += (obj_a_avg_y_total - obj_b_avg_y_total) elif relationship == 3: loss += (obj_b_avg_y_total - obj_a_avg_y_total) loss = loss / (len(attn_maps_up[0]) + len(attn_maps_mid)) return loss @hydra.main(version_base=None, config_path="conf", config_name="config_visor_box") def train(cfg: DictConfig): # fix the randomness of torch print(cfg) with open('./conf/unet/origin_config.json') as f: unet_config = json.load(f) unet = unet_2d_condition.UNet2DConditionModel(**unet_config) # ckp = torch.load('/Users/shil5883/Downloads/diffusion_pytorch_model.bin', map_location='cpu') # prev_attn_map = torch.load('./attn_map.ckp', map_location='cpu') ckp = torch.load('/work/minghao/chess_gen/diffusion_pytorch_model.bin', map_location='cpu') prev_attn_map = torch.load('/work/minghao/chess_gen/visual_attn/2023-02-02/15-05-51/epoch_100_sche_constant_lr_1e-06_ac_1/attn_map.ckp', map_location='cpu') # prev_attn_map = torch.load('/work/minghao/chess_gen/visual_attn/2023-01-16/18-58-12/epoch_100_sche_constant_lr_1e-06_ac_1/attn_map.ckp', map_location='cpu') unet.load_state_dict(ckp) unet_original = UNet2DConditionModel(**unet_config) unet_original.load_state_dict(ckp) date_now, time_now = datetime.now().strftime("%Y-%m-%d,%H-%M-%S").split(',') # cfg.general.save_path = os.path.join(cfg.general.save_path, date_now, time_now) # if not os.path.exists(cfg.general.save_path ): # os.makedirs(cfg.general.save_path) # cfg.general.save_path mixed_precision = 'fp16' if torch.cuda.is_available() else 'no' accelerator = Accelerator( gradient_accumulation_steps=cfg.training.accumulate_step, mixed_precision=mixed_precision, log_with="tensorboard", logging_dir='./', ) # initialize dataset and dataloader if accelerator.is_main_process: print("Loading the dataset!!!!!") tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer") # train_dataset = ICLEVERDataset(cfg.data.data_path, tokenizer, cfg, prefix='train') # val_dataset = ICLEVERDataset(cfg.data.data_path, tokenizer, cfg, prefix='val') # train_loader = DataLoader(train_dataset, batch_size=cfg.training.batch_size, shuffle=True, num_workers=2, pin_memory=False) # val_loader = DataLoader(val_dataset, batch_size=cfg.training.batch_size * 2, shuffle=True, num_workers=2, pin_memory=False) if accelerator.is_main_process: print("Complete loading the dataset!!!!!") if accelerator.is_main_process: print("Complete load the noise scheduler!!!!!") with open("config.yaml", "w") as f: OmegaConf.save(cfg, f) if not os.path.exists(cfg.general.save_path) and accelerator.is_main_process: os.makedirs(cfg.general.save_path) if accelerator.is_main_process: print("saved load the noise scheduler!!!!!") # Move unet to device device = "cuda" if torch.cuda.is_available() else "cpu" # load pretrained models and schedular text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder") vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae") # boards_embedder.to(device) if accelerator.is_main_process: print("move the model to device!!!!!") # Keep vae and unet in eval model as we don't train these # Initialize the optimizer cfg.training.lr = ( cfg.training.lr * cfg.training.accumulate_step * cfg.training.batch_size * accelerator.num_processes ) # Move vae and unet to device vae.to(device) unet.to(device) text_encoder.to(device) # prev_attn_map.to(device) unet_original.to(device) vae.eval() unet.eval() text_encoder.eval() unet_original.eval() # tokenizer.to(device) # if accelerator.is_main_process: print("prepare the accelerator module at process: {}!!!!!".format(accelerator.process_index)) # unet = accelerator.prepare(unet) print("done the accelerator module at process: {}!!!!!".format(accelerator.process_index)) # Create EMA for the unet. # if cfg.training.use_ema: # ema_unet = EMAModel(unet.parameters()) # ema_encoder = EMAModel(boards_embedder.parameters()) ema_unet = None # print(start_ema) if cfg.training.use_ema: if accelerator.is_main_process: print("Using the EMA model!!!!!") print("start EMA at process: {}!!!!!".format(accelerator.process_index)) ema_unet = EMAModel(unet.parameters()) # ema_encoder = EMAModel(boards_embedder.parameters()) # prompt = 'A traffic light below a sink' templates = ['{} to the left of {}', '{} to the right of {}', '{} above {}', '{} below {}'] bboxes_template = [[0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 1.0, 0.5], [0.5, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0]] bboxes_template_list = [[0, 2], [2, 0], [1, 3], [3, 1]] iteration_start = cfg.inference.start_pair iteration_now = iteration_start iteration_interval = cfg.inference.iteration_interval with open('./coco_paris.txt', 'r') as f: image_pairs = f.readlines() for image_pair in tqdm(image_pairs[iteration_start: iteration_start + iteration_interval]): obj_a, obj_b = image_pair.strip().split(',')[0], image_pair.strip().split(',')[1] obj_a = 'A {}'.format(obj_a) if obj_a[0] not in ['a', 'e', 'i', 'o', 'u'] else 'An {}'.format(obj_a) obj_b = 'a {}'.format(obj_b) if obj_b[0] not in ['a', 'e', 'i', 'o', 'u'] else 'an {}'.format(obj_b) for idx, template in enumerate(templates): prompt = template.format(obj_a, obj_b) obj_a_len = len(obj_a.split(' ')) - 1 obj_a_position = [2] if obj_a_len == 1 else [2, 3] obj_b_position = [obj_a_len + 1 + len(template.split(' ')) + i for i in range(len(obj_b.split(' '))-1)] obj_positions = [obj_a_position, obj_b_position] obj_a_boxes = [bboxes_template[bboxes_template_list[idx][0]].copy() for _ in range(len(obj_a.split(' ')) - 1)] obj_b_boxes = [bboxes_template[bboxes_template_list[idx][1]].copy() for _ in range(len(obj_b.split(' ')) - 1)] obj_boxes = [obj_a_boxes, obj_b_boxes] print(prompt, obj_positions, obj_boxes) # for infer_iter in range(1): inference(device, unet, unet_original, vae, tokenizer, text_encoder, prompt, cfg, prev_attn_map, bboxes=obj_boxes, object_positions=obj_positions, infer_iter=cfg.inference.infer_iter, pair_id=iteration_now) obj_b, obj_a = image_pair.strip().split(',')[0], image_pair.strip().split(',')[1] obj_a = 'A {}'.format(obj_a) if obj_a[0] not in ['a', 'e', 'i', 'o', 'u'] else 'An {}'.format(obj_a) obj_b = 'a {}'.format(obj_b) if obj_b[0] not in ['a', 'e', 'i', 'o', 'u'] else 'an {}'.format(obj_b) for idx, template in enumerate(templates): prompt = template.format(obj_a, obj_b) obj_a_len = len(obj_a.split(' ')) - 1 obj_a_position = [2] if obj_a_len == 1 else [2, 3] obj_b_position = [obj_a_len + 1 + len(template.split(' ')) + i for i in range(len(obj_b.split(' '))-1)] obj_positions = [obj_a_position, obj_b_position] obj_a_boxes = [bboxes_template[bboxes_template_list[idx][0]].copy() for _ in range(len(obj_a.split(' ')) - 1)] obj_b_boxes = [bboxes_template[bboxes_template_list[idx][1]].copy() for _ in range(len(obj_b.split(' ')) - 1)] obj_boxes = [obj_a_boxes, obj_b_boxes] print(prompt, obj_positions, obj_boxes) inference(device, unet, unet_original, vae, tokenizer, text_encoder, prompt, cfg, prev_attn_map, bboxes=obj_boxes, object_positions=obj_positions, infer_iter=cfg.inference.infer_iter, pair_id=iteration_now) iteration_now += 1 def compute_ca_loss(attn_maps_mid, attn_maps_up, bboxes, object_positions): loss = 0 object_number = len(bboxes) if object_number == 0: return torch.tensor(0).float().cuda() for attn_map_integrated in attn_maps_mid: attn_map = attn_map_integrated.chunk(2)[1] # b, i, j = attn_map.shape H = W = int(math.sqrt(i)) # pdb.set_trace() for obj_idx in range(object_number): obj_loss = 0 mask = torch.zeros(size=(H, W)).cuda() for obj_box in bboxes[obj_idx]: x_min, y_min, x_max, y_max = int(obj_box[0] * W), \ int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H) mask[y_min: y_max, x_min: x_max] = 1 for obj_position in object_positions[obj_idx]: ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W) # ca_map_obj = attn_map[:, :, object_positions[obj_position]].reshape(b, H, W) activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1)/ca_map_obj.reshape(b, -1).sum(dim=-1) obj_loss += torch.mean((1 - activation_value) ** 2) loss += (obj_loss/len(object_positions[obj_idx])) # print("??", obj_idx, obj_loss/len(object_positions[obj_idx])) # compute loss on padding tokens # activation_value = torch.zeros(size=(b, )).cuda() # for obj_idx in range(object_number): # bbox = bboxes[obj_idx] # ca_map_obj = attn_map[:, :, padding_start:].reshape(b, H, W, -1) # activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H), # int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1) # # loss += torch.mean((1 - activation_value) ** 2) for attn_map_integrated in attn_maps_up[0]: attn_map = attn_map_integrated.chunk(2)[1] # b, i, j = attn_map.shape H = W = int(math.sqrt(i)) for obj_idx in range(object_number): obj_loss = 0 mask = torch.zeros(size=(H, W)).cuda() for obj_box in bboxes[obj_idx]: x_min, y_min, x_max, y_max = int(obj_box[0] * W), \ int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H) mask[y_min: y_max, x_min: x_max] = 1 for obj_position in object_positions[obj_idx]: ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W) # ca_map_obj = attn_map[:, :, object_positions[obj_position]].reshape(b, H, W) activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum( dim=-1) obj_loss += torch.mean((1 - activation_value) ** 2) loss += (obj_loss / len(object_positions[obj_idx])) # compute loss on padding tokens # activation_value = torch.zeros(size=(b, )).cuda() # for obj_idx in range(object_number): # bbox = bboxes[obj_idx] # ca_map_obj = attn_map[:, :,padding_start:].reshape(b, H, W, -1) # activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H), # int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1) # # loss += torch.mean((1 - activation_value) ** 2) loss = loss / (object_number * (len(attn_maps_up[0]) + len(attn_maps_mid))) return loss def plt_all_attn_map_in_one(attn_map_integrated_list_down, attn_map_integrated_list_mid, attn_map_integrated_list_up, image, prompt, cfg, t, prefix='all'): prompt_split = prompt.split(' ') prompt_len = len(prompt_split) + 4 total_layers = len(attn_map_integrated_list_down) + len(attn_map_integrated_list_mid) + len(attn_map_integrated_list_up) fig, axs = plt.subplots(nrows=total_layers+1, ncols=prompt_len, figsize=(4 * prompt_len, 4 * total_layers)) fig.suptitle(prompt, fontsize=32) fig.tight_layout() cnt = 1 ax = axs[0][0] ax.imshow(image) for prompt_idx in range(prompt_len): ax = axs[0][prompt_idx] ax.set_axis_off() for layer, attn_map_integrated in enumerate(attn_map_integrated_list_down): attn_map_uncond, attn_map = attn_map_integrated.chunk(2) grid_size = int(math.sqrt(attn_map.shape[1])) for prompt_idx in range(prompt_len): ax = axs[cnt][prompt_idx] if prompt_idx == 0: ax.set_ylabel('down {}'.format(layer), rotation=0, size='large') mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy() im = ax.imshow(mask, cmap='YlGn') ax.set_axis_off() cnt += 1 for layer, attn_map_integrated in enumerate(attn_map_integrated_list_mid): attn_map_uncond, attn_map = attn_map_integrated.chunk(2) grid_size = int(math.sqrt(attn_map.shape[1])) for prompt_idx in range(prompt_len): ax = axs[cnt][prompt_idx] if prompt_idx ==0: ax.set_ylabel('mid {}'.format(layer), rotation=0, size='large') mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy() im = ax.imshow(mask, cmap='YlGn') ax.set_axis_off() cnt += 1 for layer, attn_map_integrated in enumerate(attn_map_integrated_list_up): attn_map_uncond, attn_map = attn_map_integrated.chunk(2) grid_size = int(math.sqrt(attn_map.shape[1])) for prompt_idx in range(prompt_len): ax = axs[cnt][prompt_idx] if prompt_idx ==0: ax.set_ylabel('up {}'.format(layer), rotation=0, size='large') mask = attn_map.mean(dim=0)[:, prompt_idx].reshape(grid_size, grid_size).detach().cpu().numpy() im = ax.imshow(mask, cmap='YlGn') ax.set_axis_off() cnt += 1 if not os.path.exists(cfg.general.save_path + "/{}".format(prefix)): os.makedirs(cfg.general.save_path + "/{}".format(prefix)) plt.savefig(cfg.general.save_path + "/{}/step_{}.png".format(prefix, str(int(t)).zfill(4))) # generate_video() plt.close() if __name__=="__main__": train()