File size: 5,268 Bytes
c069edf
6133a63
 
7fa4c88
05c34a8
9f559e5
fadc2ea
b9d94dc
fadc2ea
6133a63
c069edf
 
c9eef99
b9d94dc
c9eef99
c069edf
 
b9d94dc
 
c9eef99
7fa4c88
 
b9d94dc
 
 
 
 
 
 
 
 
 
 
 
7fa4c88
 
 
e4165c8
4f21ff8
e4165c8
05c34a8
e4165c8
 
db2e73b
 
e4165c8
 
 
b9d94dc
 
4f21ff8
6133a63
 
 
 
 
05c34a8
9fd4d92
 
6133a63
 
05c34a8
 
 
 
7fa4c88
 
 
 
 
b9d94dc
4f21ff8
f8c3935
 
6133a63
f8c3935
e372f0d
7fa4c88
9f559e5
6133a63
b9d94dc
9533a0b
cf4d675
e4165c8
db2e73b
5cd11f8
 
 
c069edf
b9d94dc
 
 
 
 
fadc2ea
 
db2e73b
b9d94dc
 
fadc2ea
 
b9d94dc
 
9f559e5
506360c
 
 
b9d94dc
506360c
 
b9d94dc
506360c
9f559e5
365f24d
 
c3629a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import gc
import tempfile
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
import gradio as gr
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse
from tqdm import tqdm
from dotenv import load_dotenv
from functools import lru_cache
import urllib3

urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

os.system("pip install llama-cpp-python")

app = FastAPI()
load_dotenv()
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

global_data = {
    'model_configs': [
        {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
        {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
        {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
        {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
        {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
        {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
        {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
        {"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
        {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
        {"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
    ]
}

class ModelManager:
    def __init__(self):
        self.models = {}
        self.load_all_models()

    def load_all_models(self):
        with ThreadPoolExecutor(max_workers=len(global_data['model_configs'])) as executor:
            futures = [executor.submit(self._load_model, config) for config in tqdm(global_data['model_configs'], desc="Loading models")]
            for future in tqdm(as_completed(futures), total=len(global_data['model_configs']), desc="Loading models complete"):
                future.result()

    def _load_model(self, model_config):
        model_name = model_config['name']
        if model_name not in self.models:
            try:
                tempdir = tempfile.TemporaryDirectory()
                filepath = os.path.join(tempdir.name, model_config['filename'])
                model = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'], use_auth_token=HUGGINGFACE_TOKEN)
                self.models[model_name] = model
                model.model.model_path = filepath
            except Exception as e:
                print(f"Error loading {model_name}: {e}")
                self.models[model_name] = None
            finally:
                gc.collect()

    def get_model(self, model_name):
        return self.models.get(model_name)

model_manager = ModelManager()

class ChatRequest(BaseModel):
    message: str

@lru_cache(maxsize=128)
def generate_model_response(model, inputs):
    try:
        response = model(inputs, max_tokens=150)
        return response['choices'][0]['text']
    except Exception as e:
        return f"Error: Could not generate a response. Details: {e}"

async def process_message(message):
    inputs = message.strip()
    responses = {}

    with ThreadPoolExecutor(max_workers=len(global_data['model_configs'])) as executor:
        futures = [executor.submit(generate_model_response, model_manager.get_model(config['name']), inputs) for config in global_data['model_configs'] if model_manager.get_model(config['name'])]
        for i, future in enumerate(tqdm(as_completed(futures), total=len([f for f in futures]), desc="Generating responses")):
            model_name = global_data['model_configs'][i]['name']
            responses[model_name] = future.result()

    return "\n\n".join([f"**{model}:**\n{response}" for model, response in responses.items()])

@app.post("/generate_multimodel")
async def api_generate_multimodel(request: Request):
    try:
        data = await request.json()
        message = data.get("message")
        if not message:
            raise HTTPException(status_code=400, detail="Missing message")
        response = await process_message(message)
        return JSONResponse({"response": response})
    except HTTPException as e:
        raise e
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)

iface = gr.Interface(
    fn=process_message,
    inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
    outputs=gr.Markdown(),
    title="Multi-Model LLM API",
    description="Enter a message and get responses from multiple LLMs.",
    live=False
)

if __name__ == "__main__":
    port = int(os.environ.get("PORT", 7860))
    iface.launch(server_port=port)