Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,24 @@
|
|
1 |
import os
|
2 |
-
|
|
|
3 |
from llama_cpp import Llama
|
4 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
5 |
-
import re
|
6 |
import gradio as gr
|
7 |
-
from dotenv import load_dotenv
|
8 |
from fastapi import FastAPI, Request, HTTPException
|
9 |
from fastapi.responses import JSONResponse
|
10 |
from tqdm import tqdm
|
|
|
11 |
from functools import lru_cache
|
12 |
import urllib3
|
13 |
|
14 |
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
15 |
|
16 |
-
# Instalar la librería llama-cpp-python
|
17 |
os.system("pip install llama-cpp-python")
|
18 |
|
19 |
app = FastAPI()
|
20 |
load_dotenv()
|
21 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
22 |
|
23 |
-
# Configuración de modelos globales
|
24 |
global_data = {
|
25 |
'model_configs': [
|
26 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
@@ -36,7 +34,6 @@ global_data = {
|
|
36 |
]
|
37 |
}
|
38 |
|
39 |
-
# Manejo de la carga de modelos
|
40 |
class ModelManager:
|
41 |
def __init__(self):
|
42 |
self.models = {}
|
@@ -52,10 +49,16 @@ class ModelManager:
|
|
52 |
model_name = model_config['name']
|
53 |
if model_name not in self.models:
|
54 |
try:
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
except Exception as e:
|
57 |
print(f"Error loading {model_name}: {e}")
|
58 |
self.models[model_name] = None
|
|
|
|
|
59 |
|
60 |
def get_model(self, model_name):
|
61 |
return self.models.get(model_name)
|
@@ -65,37 +68,16 @@ model_manager = ModelManager()
|
|
65 |
class ChatRequest(BaseModel):
|
66 |
message: str
|
67 |
|
68 |
-
# Normalización de entrada
|
69 |
-
def normalize_input(input_text):
|
70 |
-
return input_text.strip()
|
71 |
-
|
72 |
-
# Eliminación de duplicados en la respuesta
|
73 |
-
def remove_duplicates(text):
|
74 |
-
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you?', text)
|
75 |
-
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you?', text)
|
76 |
-
text = text.replace('[/INST]', '')
|
77 |
-
lines = text.split('\n')
|
78 |
-
unique_lines = []
|
79 |
-
seen_lines = set()
|
80 |
-
for line in lines:
|
81 |
-
if line not in seen_lines:
|
82 |
-
unique_lines.append(line)
|
83 |
-
seen_lines.add(line)
|
84 |
-
return '\n'.join(unique_lines)
|
85 |
-
|
86 |
-
# Generación de respuesta de modelo
|
87 |
@lru_cache(maxsize=128)
|
88 |
def generate_model_response(model, inputs):
|
89 |
try:
|
90 |
response = model(inputs, max_tokens=150)
|
91 |
-
return
|
92 |
except Exception as e:
|
93 |
-
print(f"Error generating response: {e}")
|
94 |
return f"Error: Could not generate a response. Details: {e}"
|
95 |
|
96 |
-
# Procesamiento del mensaje
|
97 |
async def process_message(message):
|
98 |
-
inputs =
|
99 |
responses = {}
|
100 |
|
101 |
with ThreadPoolExecutor(max_workers=len(global_data['model_configs'])) as executor:
|
@@ -120,7 +102,6 @@ async def api_generate_multimodel(request: Request):
|
|
120 |
except Exception as e:
|
121 |
return JSONResponse({"error": str(e)}, status_code=500)
|
122 |
|
123 |
-
# Interfaz Gradio
|
124 |
iface = gr.Interface(
|
125 |
fn=process_message,
|
126 |
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
@@ -130,7 +111,6 @@ iface = gr.Interface(
|
|
130 |
live=False
|
131 |
)
|
132 |
|
133 |
-
# Lanzar servidor
|
134 |
if __name__ == "__main__":
|
135 |
port = int(os.environ.get("PORT", 7860))
|
136 |
iface.launch(server_port=port)
|
|
|
1 |
import os
|
2 |
+
import gc
|
3 |
+
import tempfile
|
4 |
from llama_cpp import Llama
|
5 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
6 |
import gradio as gr
|
|
|
7 |
from fastapi import FastAPI, Request, HTTPException
|
8 |
from fastapi.responses import JSONResponse
|
9 |
from tqdm import tqdm
|
10 |
+
from dotenv import load_dotenv
|
11 |
from functools import lru_cache
|
12 |
import urllib3
|
13 |
|
14 |
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
15 |
|
|
|
16 |
os.system("pip install llama-cpp-python")
|
17 |
|
18 |
app = FastAPI()
|
19 |
load_dotenv()
|
20 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
21 |
|
|
|
22 |
global_data = {
|
23 |
'model_configs': [
|
24 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
|
|
34 |
]
|
35 |
}
|
36 |
|
|
|
37 |
class ModelManager:
|
38 |
def __init__(self):
|
39 |
self.models = {}
|
|
|
49 |
model_name = model_config['name']
|
50 |
if model_name not in self.models:
|
51 |
try:
|
52 |
+
tempdir = tempfile.TemporaryDirectory()
|
53 |
+
filepath = os.path.join(tempdir.name, model_config['filename'])
|
54 |
+
model = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'], use_auth_token=HUGGINGFACE_TOKEN)
|
55 |
+
self.models[model_name] = model
|
56 |
+
model.model.model_path = filepath
|
57 |
except Exception as e:
|
58 |
print(f"Error loading {model_name}: {e}")
|
59 |
self.models[model_name] = None
|
60 |
+
finally:
|
61 |
+
gc.collect()
|
62 |
|
63 |
def get_model(self, model_name):
|
64 |
return self.models.get(model_name)
|
|
|
68 |
class ChatRequest(BaseModel):
|
69 |
message: str
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
@lru_cache(maxsize=128)
|
72 |
def generate_model_response(model, inputs):
|
73 |
try:
|
74 |
response = model(inputs, max_tokens=150)
|
75 |
+
return response['choices'][0]['text']
|
76 |
except Exception as e:
|
|
|
77 |
return f"Error: Could not generate a response. Details: {e}"
|
78 |
|
|
|
79 |
async def process_message(message):
|
80 |
+
inputs = message.strip()
|
81 |
responses = {}
|
82 |
|
83 |
with ThreadPoolExecutor(max_workers=len(global_data['model_configs'])) as executor:
|
|
|
102 |
except Exception as e:
|
103 |
return JSONResponse({"error": str(e)}, status_code=500)
|
104 |
|
|
|
105 |
iface = gr.Interface(
|
106 |
fn=process_message,
|
107 |
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
|
|
111 |
live=False
|
112 |
)
|
113 |
|
|
|
114 |
if __name__ == "__main__":
|
115 |
port = int(os.environ.get("PORT", 7860))
|
116 |
iface.launch(server_port=port)
|