Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,27 @@
|
|
|
|
1 |
from pydantic import BaseModel
|
2 |
from llama_cpp import Llama
|
3 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
4 |
import re
|
5 |
import gradio as gr
|
6 |
-
import os
|
7 |
-
import urllib3
|
8 |
-
import pickle
|
9 |
-
from functools import lru_cache
|
10 |
from dotenv import load_dotenv
|
11 |
from fastapi import FastAPI, Request, HTTPException
|
12 |
from fastapi.responses import JSONResponse
|
13 |
from tqdm import tqdm
|
|
|
|
|
14 |
|
15 |
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
16 |
|
|
|
|
|
|
|
17 |
app = FastAPI()
|
18 |
load_dotenv()
|
19 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
20 |
|
|
|
21 |
global_data = {
|
22 |
-
'tokens': {'eos': 'eos_token', 'pad': 'pad_token', 'padding': 'padding_token',
|
23 |
-
'unk': 'unk_token', 'bos': 'bos_token', 'sep': 'sep_token',
|
24 |
-
'cls': 'cls_token', 'mask': 'mask_token'},
|
25 |
'model_configs': [
|
26 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
27 |
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
|
@@ -36,14 +36,10 @@ global_data = {
|
|
36 |
]
|
37 |
}
|
38 |
|
39 |
-
|
40 |
-
model_cache_dir = "model_cache"
|
41 |
-
os.makedirs(model_cache_dir, exist_ok=True)
|
42 |
-
|
43 |
class ModelManager:
|
44 |
def __init__(self):
|
45 |
self.models = {}
|
46 |
-
self.model_cache_dir = model_cache_dir
|
47 |
self.load_all_models()
|
48 |
|
49 |
def load_all_models(self):
|
@@ -54,16 +50,9 @@ class ModelManager:
|
|
54 |
|
55 |
def _load_model(self, model_config):
|
56 |
model_name = model_config['name']
|
57 |
-
cache_file = os.path.join(self.model_cache_dir, f"{model_name}.pkl")
|
58 |
if model_name not in self.models:
|
59 |
try:
|
60 |
-
|
61 |
-
with open(cache_file, "rb") as f:
|
62 |
-
self.models[model_name] = pickle.load(f)
|
63 |
-
else:
|
64 |
-
self.models[model_name] = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'], use_auth_token=HUGGINGFACE_TOKEN)
|
65 |
-
with open(cache_file, "wb") as f:
|
66 |
-
pickle.dump(self.models[model_name], f)
|
67 |
except Exception as e:
|
68 |
print(f"Error loading {model_name}: {e}")
|
69 |
self.models[model_name] = None
|
@@ -76,9 +65,11 @@ model_manager = ModelManager()
|
|
76 |
class ChatRequest(BaseModel):
|
77 |
message: str
|
78 |
|
|
|
79 |
def normalize_input(input_text):
|
80 |
return input_text.strip()
|
81 |
|
|
|
82 |
def remove_duplicates(text):
|
83 |
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you?', text)
|
84 |
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you?', text)
|
@@ -92,6 +83,7 @@ def remove_duplicates(text):
|
|
92 |
seen_lines.add(line)
|
93 |
return '\n'.join(unique_lines)
|
94 |
|
|
|
95 |
@lru_cache(maxsize=128)
|
96 |
def generate_model_response(model, inputs):
|
97 |
try:
|
@@ -101,11 +93,9 @@ def generate_model_response(model, inputs):
|
|
101 |
print(f"Error generating response: {e}")
|
102 |
return f"Error: Could not generate a response. Details: {e}"
|
103 |
|
|
|
104 |
async def process_message(message):
|
105 |
inputs = normalize_input(message)
|
106 |
-
if inputs in response_cache:
|
107 |
-
return response_cache[inputs]
|
108 |
-
|
109 |
responses = {}
|
110 |
|
111 |
with ThreadPoolExecutor(max_workers=len(global_data['model_configs'])) as executor:
|
@@ -114,9 +104,7 @@ async def process_message(message):
|
|
114 |
model_name = global_data['model_configs'][i]['name']
|
115 |
responses[model_name] = future.result()
|
116 |
|
117 |
-
|
118 |
-
response_cache[inputs] = formatted_response
|
119 |
-
return formatted_response
|
120 |
|
121 |
@app.post("/generate_multimodel")
|
122 |
async def api_generate_multimodel(request: Request):
|
@@ -132,6 +120,7 @@ async def api_generate_multimodel(request: Request):
|
|
132 |
except Exception as e:
|
133 |
return JSONResponse({"error": str(e)}, status_code=500)
|
134 |
|
|
|
135 |
iface = gr.Interface(
|
136 |
fn=process_message,
|
137 |
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
@@ -141,6 +130,7 @@ iface = gr.Interface(
|
|
141 |
live=False
|
142 |
)
|
143 |
|
|
|
144 |
if __name__ == "__main__":
|
145 |
port = int(os.environ.get("PORT", 7860))
|
146 |
iface.launch(server_port=port)
|
|
|
1 |
+
import os
|
2 |
from pydantic import BaseModel
|
3 |
from llama_cpp import Llama
|
4 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
5 |
import re
|
6 |
import gradio as gr
|
|
|
|
|
|
|
|
|
7 |
from dotenv import load_dotenv
|
8 |
from fastapi import FastAPI, Request, HTTPException
|
9 |
from fastapi.responses import JSONResponse
|
10 |
from tqdm import tqdm
|
11 |
+
from functools import lru_cache
|
12 |
+
import urllib3
|
13 |
|
14 |
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
15 |
|
16 |
+
# Instalar la librería llama-cpp-python
|
17 |
+
os.system("pip install llama-cpp-python")
|
18 |
+
|
19 |
app = FastAPI()
|
20 |
load_dotenv()
|
21 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
22 |
|
23 |
+
# Configuración de modelos globales
|
24 |
global_data = {
|
|
|
|
|
|
|
25 |
'model_configs': [
|
26 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
27 |
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
|
|
|
36 |
]
|
37 |
}
|
38 |
|
39 |
+
# Manejo de la carga de modelos
|
|
|
|
|
|
|
40 |
class ModelManager:
|
41 |
def __init__(self):
|
42 |
self.models = {}
|
|
|
43 |
self.load_all_models()
|
44 |
|
45 |
def load_all_models(self):
|
|
|
50 |
|
51 |
def _load_model(self, model_config):
|
52 |
model_name = model_config['name']
|
|
|
53 |
if model_name not in self.models:
|
54 |
try:
|
55 |
+
self.models[model_name] = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'], use_auth_token=HUGGINGFACE_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
except Exception as e:
|
57 |
print(f"Error loading {model_name}: {e}")
|
58 |
self.models[model_name] = None
|
|
|
65 |
class ChatRequest(BaseModel):
|
66 |
message: str
|
67 |
|
68 |
+
# Normalización de entrada
|
69 |
def normalize_input(input_text):
|
70 |
return input_text.strip()
|
71 |
|
72 |
+
# Eliminación de duplicados en la respuesta
|
73 |
def remove_duplicates(text):
|
74 |
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you?', text)
|
75 |
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you?', text)
|
|
|
83 |
seen_lines.add(line)
|
84 |
return '\n'.join(unique_lines)
|
85 |
|
86 |
+
# Generación de respuesta de modelo
|
87 |
@lru_cache(maxsize=128)
|
88 |
def generate_model_response(model, inputs):
|
89 |
try:
|
|
|
93 |
print(f"Error generating response: {e}")
|
94 |
return f"Error: Could not generate a response. Details: {e}"
|
95 |
|
96 |
+
# Procesamiento del mensaje
|
97 |
async def process_message(message):
|
98 |
inputs = normalize_input(message)
|
|
|
|
|
|
|
99 |
responses = {}
|
100 |
|
101 |
with ThreadPoolExecutor(max_workers=len(global_data['model_configs'])) as executor:
|
|
|
104 |
model_name = global_data['model_configs'][i]['name']
|
105 |
responses[model_name] = future.result()
|
106 |
|
107 |
+
return "\n\n".join([f"**{model}:**\n{response}" for model, response in responses.items()])
|
|
|
|
|
108 |
|
109 |
@app.post("/generate_multimodel")
|
110 |
async def api_generate_multimodel(request: Request):
|
|
|
120 |
except Exception as e:
|
121 |
return JSONResponse({"error": str(e)}, status_code=500)
|
122 |
|
123 |
+
# Interfaz Gradio
|
124 |
iface = gr.Interface(
|
125 |
fn=process_message,
|
126 |
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
|
|
130 |
live=False
|
131 |
)
|
132 |
|
133 |
+
# Lanzar servidor
|
134 |
if __name__ == "__main__":
|
135 |
port = int(os.environ.get("PORT", 7860))
|
136 |
iface.launch(server_port=port)
|