Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -52,7 +52,6 @@ class ModelManager:
|
|
52 |
for future in tqdm(as_completed(futures), total=len(global_data['model_configs']), desc="Loading models complete"):
|
53 |
future.result()
|
54 |
|
55 |
-
|
56 |
def _load_model(self, model_config):
|
57 |
model_name = model_config['name']
|
58 |
cache_file = os.path.join(self.model_cache_dir, f"{model_name}.pkl")
|
@@ -69,6 +68,7 @@ class ModelManager:
|
|
69 |
print(f"Error loading model {model_name}: {e}")
|
70 |
self.models[model_name] = None
|
71 |
|
|
|
72 |
def get_model(self, model_name):
|
73 |
return self.models.get(model_name)
|
74 |
|
@@ -107,15 +107,18 @@ async def process_message(message):
|
|
107 |
|
108 |
with ThreadPoolExecutor(max_workers=len(global_data['model_configs'])) as executor:
|
109 |
futures = [executor.submit(generate_model_response, model_manager.get_model(config['name']), inputs) for config in global_data['model_configs'] if model_manager.get_model(config['name'])]
|
|
|
110 |
for i, future in enumerate(tqdm(as_completed(futures), total=len([f for f in futures]), desc="Generating responses")):
|
111 |
-
|
112 |
-
|
|
|
113 |
|
114 |
|
115 |
formatted_response = "\n\n".join([f"**{model}:**\n{response}" for model, response in responses.items()])
|
116 |
response_cache[inputs] = formatted_response
|
117 |
return formatted_response
|
118 |
|
|
|
119 |
@app.post("/generate_multimodel")
|
120 |
async def api_generate_multimodel(request: Request):
|
121 |
try:
|
@@ -131,6 +134,7 @@ async def api_generate_multimodel(request: Request):
|
|
131 |
return JSONResponse({"error": str(e)}, status_code=500)
|
132 |
|
133 |
|
|
|
134 |
iface = gr.Interface(
|
135 |
fn=process_message,
|
136 |
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
|
|
52 |
for future in tqdm(as_completed(futures), total=len(global_data['model_configs']), desc="Loading models complete"):
|
53 |
future.result()
|
54 |
|
|
|
55 |
def _load_model(self, model_config):
|
56 |
model_name = model_config['name']
|
57 |
cache_file = os.path.join(self.model_cache_dir, f"{model_name}.pkl")
|
|
|
68 |
print(f"Error loading model {model_name}: {e}")
|
69 |
self.models[model_name] = None
|
70 |
|
71 |
+
|
72 |
def get_model(self, model_name):
|
73 |
return self.models.get(model_name)
|
74 |
|
|
|
107 |
|
108 |
with ThreadPoolExecutor(max_workers=len(global_data['model_configs'])) as executor:
|
109 |
futures = [executor.submit(generate_model_response, model_manager.get_model(config['name']), inputs) for config in global_data['model_configs'] if model_manager.get_model(config['name'])]
|
110 |
+
|
111 |
for i, future in enumerate(tqdm(as_completed(futures), total=len([f for f in futures]), desc="Generating responses")):
|
112 |
+
model_name = global_data['model_configs'][i]['name']
|
113 |
+
responses[model_name] = future.result()
|
114 |
+
|
115 |
|
116 |
|
117 |
formatted_response = "\n\n".join([f"**{model}:**\n{response}" for model, response in responses.items()])
|
118 |
response_cache[inputs] = formatted_response
|
119 |
return formatted_response
|
120 |
|
121 |
+
|
122 |
@app.post("/generate_multimodel")
|
123 |
async def api_generate_multimodel(request: Request):
|
124 |
try:
|
|
|
134 |
return JSONResponse({"error": str(e)}, status_code=500)
|
135 |
|
136 |
|
137 |
+
|
138 |
iface = gr.Interface(
|
139 |
fn=process_message,
|
140 |
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
|