Spaces:
Runtime error
Runtime error
File size: 17,756 Bytes
890de26 492a71a 890de26 dc311f2 890de26 55675a3 890de26 0073adb 890de26 0073adb b3ed186 792e702 0073adb dc311f2 0073adb 2455fea 0073adb 2455fea 0073adb b3ed186 30a0d7d b3ed186 30a0d7d fefcbfb 30a0d7d fefcbfb 30a0d7d fefcbfb 0948a45 fefcbfb 0073adb fefcbfb 0073adb 3b52837 0073adb 970cddc 46390ae 970cddc 46390ae 970cddc 46390ae 970cddc 46390ae 970cddc 0b79815 3199c92 970cddc 3199c92 dc311f2 3199c92 24c36c5 3b52837 3199c92 3b52837 0073adb fefcbfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import torch
import time
import numpy as np
import mediapipe as mp
from PIL import Image
import cv2
from pytorch_grad_cam.utils.image import show_cam_on_image
import scipy.io.wavfile as wav
# Importing necessary components for the Gradio app
from model import pth_model_static, pth_model_dynamic, cam, pth_processing
from face_utils import get_box, display_info
from config import DICT_EMO, config_data
from plot import statistics_plot
from moviepy.editor import AudioFileClip
import soundfile as sf
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class
from paraformer import AudioReader, CttPunctuator, FSMNVad, ParaformerOffline
from gradio_client import Client
##############################################################################################
client = Client("Liusuthu/TextDepression")
mp_face_mesh = mp.solutions.face_mesh
classifier = foreign_class(
source="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP", # ".\\emotion-recognition-wav2vec2-IEMOCAP"
pymodule_file="custom_interface.py",
classname="CustomEncoderWav2vec2Classifier",
savedir="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
)
ASR_model = ParaformerOffline()
vad = FSMNVad()
punc = CttPunctuator()
#########################################################################################
def text_api(text:str):
result = client.predict(
text, # str in '输入文字' Textbox component
api_name="/predict",
)
return result
# def get_text_score(text):
# string=text_api(text)
# part1 = str.partition(string, r"text")
# want1 = part1[2]
# label = want1[4:6]
# part2 = str.partition(string, r"probability")
# want2 = part2[2]
# prob = float(want2[3:-4])
# return label, prob
def classify_continuous(audio):
print(type(audio))
print(audio)
sample_rate, signal = (audio) # 这是语音的输入
signal = signal.astype(np.float32)
signal /= np.max(np.abs(signal))
sf.write("data/a.wav", signal, sample_rate)
signal, sample_rate = torchaudio.load("data/a.wav")
signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
signal
)
torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
Audio = "data/out.wav"
speech, sample_rate = AudioReader.read_wav_file(Audio)
if signal == "none":
return "none", "none", "haha"
else:
segments = vad.segments_offline(speech)
text_results = ""
for part in segments:
_result = ASR_model.infer_offline(
speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
)
text_results += punc.punctuate(_result)[0]
out_prob, score, index, text_lab = classifier.classify_batch(signal1)
print(type(out_prob.squeeze(0).numpy()))
print(out_prob.squeeze(0).numpy())
print(type(text_lab[-1]))
print(text_lab[-1])
return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio
# def preprocess_image_and_predict(inp):
# return None, None, None
# def preprocess_video_and_predict(video):
# return None, None, None, None
#######################################################################
#规范函数,只管值输入输出:
def text_score(text):
string=text_api(text)
part1 = str.partition(string, r"text")
want1 = part1[2]
label = want1[4:6]
part2 = str.partition(string, r"probability")
want2 = part2[2]
prob = float(want2[3:-4])
if label=="正向":
score=-prob*10
else:
score=prob*10
return text,score
def speech_score(audio):
print(type(audio))
print(audio)
sample_rate, signal = audio # 这是语音的输入
signal = signal.astype(np.float32)
signal /= np.max(np.abs(signal))
sf.write("data/a.wav", signal, sample_rate)
signal, sample_rate = torchaudio.load("data/a.wav")
signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
signal
)
torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
Audio = "data/out.wav"
speech, sample_rate = AudioReader.read_wav_file(Audio)
if signal == "none":
return "none", "none", "haha"
else:
segments = vad.segments_offline(speech)
text_results = ""
for part in segments:
_result = ASR_model.infer_offline(
speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
)
text_results += punc.punctuate(_result)[0]
out_prob, score, index, text_lab = classifier.classify_batch(signal1)
print(type(out_prob.squeeze(0).numpy()))
print(out_prob.squeeze(0).numpy())
print(type(text_lab[-1]))
print(text_lab[-1])
#return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio
prob=out_prob.squeeze(0).numpy()
print(prob)
score2=10*prob[0]-10*prob[1]
print("score2",score2)
print(text_lab[-1])
text,score1=text_score(text_results)
# text_emo=str(get_text_score(text_results))
print(text,score1)
score=score1+score2
return text,score
def video_score(video):
cap = cv2.VideoCapture(video)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
path_save_video_face = 'result_face.mp4'
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
# path_save_video_hm = 'result_hm.mp4'
# vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
lstm_features = []
count_frame = 1
count_face = 0
probs = []
frames = []
last_output = None
last_heatmap = None
cur_face = None
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
_, frame = cap.read()
if frame is None: break
frame_copy = frame.copy()
frame_copy.flags.writeable = False
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
results = face_mesh.process(frame_copy)
frame_copy.flags.writeable = True
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame_copy[startY:endY, startX: endX]
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
cur_face_copy = pth_processing(Image.fromarray(cur_face))
with torch.no_grad():
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
# grayscale_cam = cam(input_tensor=cur_face_copy)
# grayscale_cam = grayscale_cam[0, :]
# cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
# cur_face_hm = np.float32(cur_face_hm) / 255
# heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
# last_heatmap = heatmap
if len(lstm_features) == 0:
lstm_features = [features]*10
else:
lstm_features = lstm_features[1:] + [features]
lstm_f = torch.from_numpy(np.vstack(lstm_features))
lstm_f = torch.unsqueeze(lstm_f, 0)
with torch.no_grad():
output = pth_model_dynamic(lstm_f).detach().numpy()
last_output = output
if count_face == 0:
count_face += 1
else:
if last_output is not None:
output = last_output
# heatmap = last_heatmap
elif last_output is None:
output = np.empty((1, 7))
output[:] = np.nan
probs.append(output[0])
frames.append(count_frame)
else:
if last_output is not None:
lstm_features = []
empty = np.empty((7))
empty[:] = np.nan
probs.append(empty)
frames.append(count_frame)
if cur_face is not None:
# heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
vid_writer_face.write(cur_face)
# vid_writer_hm.write(heatmap_f)
count_frame += 1
if count_face != 0:
count_face += 1
vid_writer_face.release()
# vid_writer_hm.release()
stat = statistics_plot(frames, probs)
if not stat:
return None, None
#for debug
print(type(frames))
print(frames)
print(type(probs))
print(probs)
# to calculate scores
nan=float('nan')
s1 = 0
s2 = 0
s3 = 0
s4 = 0
s5 = 0
s6 = 0
s7 = 0
frames_len=len(frames)
for i in range(frames_len):
if np.isnan(probs[i][0]):
frames_len=frames_len-1
else:
s1=s1+probs[i][0]
s2=s2+probs[i][1]
s3=s3+probs[i][2]
s4=s4+probs[i][3]
s5=s5+probs[i][4]
s6=s6+probs[i][5]
s7=s7+probs[i][6]
s1=s1/frames_len
s2=s2/frames_len
s3=s3/frames_len
s4=s4/frames_len
s5=s5/frames_len
s6=s6/frames_len
s7=s7/frames_len
scores=[s1,s2,s3,s4,s5,s6,s7]
scores_str=str(scores)
score1=0*scores[0]-8*scores[1]+4*scores[2]+0*scores[3]+2*scores[4]+2*scores[5]+4*scores[6]
print("score1=",score1)
with open("local_data/data.txt",'a', encoding="utf8") as f:
f.write(scores_str+'\n')
with open("local_data/data.txt",'r', encoding="utf8") as f:
for i in f:
print(i)
#trans the audio file
my_audio_clip = AudioFileClip(video)
my_audio_clip.write_audiofile("data/audio.wav",ffmpeg_params=["-ac","1"])
audio = wav.read('data/audio.wav')
text,score2=speech_score(audio)
print(text)
score=score2+score1
return text,score
#######################################################################
###########################################################################################################################
# def video_score(video):
# cap = cv2.VideoCapture(video)
# w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# fps = np.round(cap.get(cv2.CAP_PROP_FPS))
# path_save_video_face = 'result_face.mp4'
# vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
# # path_save_video_hm = 'result_hm.mp4'
# # vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
# lstm_features = []
# count_frame = 1
# count_face = 0
# probs = []
# frames = []
# last_output = None
# last_heatmap = None
# cur_face = None
# with mp_face_mesh.FaceMesh(
# max_num_faces=1,
# refine_landmarks=False,
# min_detection_confidence=0.5,
# min_tracking_confidence=0.5) as face_mesh:
# while cap.isOpened():
# _, frame = cap.read()
# if frame is None: break
# frame_copy = frame.copy()
# frame_copy.flags.writeable = False
# frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
# results = face_mesh.process(frame_copy)
# frame_copy.flags.writeable = True
# if results.multi_face_landmarks:
# for fl in results.multi_face_landmarks:
# startX, startY, endX, endY = get_box(fl, w, h)
# cur_face = frame_copy[startY:endY, startX: endX]
# if count_face%config_data.FRAME_DOWNSAMPLING == 0:
# cur_face_copy = pth_processing(Image.fromarray(cur_face))
# with torch.no_grad():
# features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
# # grayscale_cam = cam(input_tensor=cur_face_copy)
# # grayscale_cam = grayscale_cam[0, :]
# # cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
# # cur_face_hm = np.float32(cur_face_hm) / 255
# # heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
# # last_heatmap = heatmap
# if len(lstm_features) == 0:
# lstm_features = [features]*10
# else:
# lstm_features = lstm_features[1:] + [features]
# lstm_f = torch.from_numpy(np.vstack(lstm_features))
# lstm_f = torch.unsqueeze(lstm_f, 0)
# with torch.no_grad():
# output = pth_model_dynamic(lstm_f).detach().numpy()
# last_output = output
# if count_face == 0:
# count_face += 1
# else:
# if last_output is not None:
# output = last_output
# # heatmap = last_heatmap
# elif last_output is None:
# output = np.empty((1, 7))
# output[:] = np.nan
# probs.append(output[0])
# frames.append(count_frame)
# else:
# if last_output is not None:
# lstm_features = []
# empty = np.empty((7))
# empty[:] = np.nan
# probs.append(empty)
# frames.append(count_frame)
# if cur_face is not None:
# # heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
# cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
# cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
# cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
# vid_writer_face.write(cur_face)
# # vid_writer_hm.write(heatmap_f)
# count_frame += 1
# if count_face != 0:
# count_face += 1
# vid_writer_face.release()
# # vid_writer_hm.release()
# stat = statistics_plot(frames, probs)
# if not stat:
# return None, None
# #for debug
# print(type(frames))
# print(frames)
# print(type(probs))
# print(probs)
# # to calculate scores
# nan=float('nan')
# s1 = 0
# s2 = 0
# s3 = 0
# s4 = 0
# s5 = 0
# s6 = 0
# s7 = 0
# frames_len=len(frames)
# for i in range(frames_len):
# if np.isnan(probs[i][0]):
# frames_len=frames_len-1
# else:
# s1=s1+probs[i][0]
# s2=s2+probs[i][1]
# s3=s3+probs[i][2]
# s4=s4+probs[i][3]
# s5=s5+probs[i][4]
# s6=s6+probs[i][5]
# s7=s7+probs[i][6]
# s1=s1/frames_len
# s2=s2/frames_len
# s3=s3/frames_len
# s4=s4/frames_len
# s5=s5/frames_len
# s6=s6/frames_len
# s7=s7/frames_len
# scores=[s1,s2,s3,s4,s5,s6,s7]
# scores_str=str(scores)
# with open("local_data/data.txt",'a', encoding="utf8") as f:
# f.write(scores_str+'\n')
# with open("local_data/data.txt",'r', encoding="utf8") as f:
# for i in f:
# print(i)
# score1=0*scores[0]-8*scores[1]+4*scores[2]+0*scores[3]+2*scores[4]+2*scores[5]+4*scores[6]
# #trans the audio file
# my_audio_clip = AudioFileClip(video)
# my_audio_clip.write_audiofile("data/audio.wav",ffmpeg_params=["-ac","1"])
# time.sleep(2)
# return stat,score1,"data/audio.wav"
# # #trans the audio file
# # my_audio_clip = AudioFileClip(video)
# # my_audio_clip.write_audiofile("newaudio.wav",ffmpeg_params=["-ac","1"])
# # # Audio="data/audio.wav"
# # # text,prob2,label,path=classify_continuous(Audio)
# # #0是抑郁概率,1是非抑郁概率
# # # score2=10*prob2[0]-10*prob[1]
# # # print(prob2,label)
# # # score2=0
# # # print("score2=",score2)
# # # text_result="demo"
# # # # text_result=text_api(text)
# # # print(text_result)
# # return score1
#打分函数
|