Spaces:
Runtime error
Runtime error
Update app_utils.py
Browse files- app_utils.py +325 -164
app_utils.py
CHANGED
@@ -87,7 +87,7 @@ def preprocess_video_and_predict(video):
|
|
87 |
|
88 |
|
89 |
#to return scores
|
90 |
-
def
|
91 |
|
92 |
cap = cv2.VideoCapture(video)
|
93 |
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
@@ -246,173 +246,334 @@ def preprocess_video_and_rank(video):
|
|
246 |
return stat,scores_str,"data/audio.wav"
|
247 |
|
248 |
###########################################################################################################################
|
249 |
-
def video_score(video):
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
|
349 |
-
vid_writer_face.release()
|
350 |
-
# vid_writer_hm.release()
|
351 |
|
352 |
-
stat = statistics_plot(frames, probs)
|
353 |
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
#for debug
|
358 |
-
print(type(frames))
|
359 |
-
print(frames)
|
360 |
-
print(type(probs))
|
361 |
-
print(probs)
|
362 |
-
# to calculate scores
|
363 |
-
nan=float('nan')
|
364 |
-
s1 = 0
|
365 |
-
s2 = 0
|
366 |
-
s3 = 0
|
367 |
-
s4 = 0
|
368 |
-
s5 = 0
|
369 |
-
s6 = 0
|
370 |
-
s7 = 0
|
371 |
-
frames_len=len(frames)
|
372 |
-
for i in range(frames_len):
|
373 |
-
if np.isnan(probs[i][0]):
|
374 |
-
frames_len=frames_len-1
|
375 |
-
else:
|
376 |
-
s1=s1+probs[i][0]
|
377 |
-
s2=s2+probs[i][1]
|
378 |
-
s3=s3+probs[i][2]
|
379 |
-
s4=s4+probs[i][3]
|
380 |
-
s5=s5+probs[i][4]
|
381 |
-
s6=s6+probs[i][5]
|
382 |
-
s7=s7+probs[i][6]
|
383 |
-
s1=s1/frames_len
|
384 |
-
s2=s2/frames_len
|
385 |
-
s3=s3/frames_len
|
386 |
-
s4=s4/frames_len
|
387 |
-
s5=s5/frames_len
|
388 |
-
s6=s6/frames_len
|
389 |
-
s7=s7/frames_len
|
390 |
-
prob=[s1,s2,s3,s4,s5,s6,s7]
|
391 |
-
prob_str=str(prob)
|
392 |
-
with open("local_data/data.txt",'a', encoding="utf8") as f:
|
393 |
-
f.write(prob_str+'\n')
|
394 |
-
|
395 |
-
with open("local_data/data.txt",'r', encoding="utf8") as f:
|
396 |
-
for i in f:
|
397 |
-
print(i)
|
398 |
-
#平衡点值为零,越正越负面
|
399 |
-
score1=0*prob[0]-8*prob[1]+4*prob[2]+0*prob[3]+2*prob[4]+2*prob[5]+4*prob[6]
|
400 |
-
print("score1=",score1)
|
401 |
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
|
418 |
-
|
|
|
87 |
|
88 |
|
89 |
#to return scores
|
90 |
+
def video_score(video):
|
91 |
|
92 |
cap = cv2.VideoCapture(video)
|
93 |
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
246 |
return stat,scores_str,"data/audio.wav"
|
247 |
|
248 |
###########################################################################################################################
|
249 |
+
# def video_score(video):
|
250 |
+
# cap = cv2.VideoCapture(video)
|
251 |
+
# w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
252 |
+
# h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
253 |
+
# fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
254 |
+
|
255 |
+
# path_save_video_face = 'result_face.mp4'
|
256 |
+
# vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
257 |
+
|
258 |
+
# # path_save_video_hm = 'result_hm.mp4'
|
259 |
+
# # vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
260 |
+
|
261 |
+
# lstm_features = []
|
262 |
+
# count_frame = 1
|
263 |
+
# count_face = 0
|
264 |
+
# probs = []
|
265 |
+
# frames = []
|
266 |
+
# last_output = None
|
267 |
+
# last_heatmap = None
|
268 |
+
# cur_face = None
|
269 |
+
|
270 |
+
# with mp_face_mesh.FaceMesh(
|
271 |
+
# max_num_faces=1,
|
272 |
+
# refine_landmarks=False,
|
273 |
+
# min_detection_confidence=0.5,
|
274 |
+
# min_tracking_confidence=0.5) as face_mesh:
|
275 |
+
|
276 |
+
# while cap.isOpened():
|
277 |
+
# _, frame = cap.read()
|
278 |
+
# if frame is None: break
|
279 |
+
|
280 |
+
# frame_copy = frame.copy()
|
281 |
+
# frame_copy.flags.writeable = False
|
282 |
+
# frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
283 |
+
# results = face_mesh.process(frame_copy)
|
284 |
+
# frame_copy.flags.writeable = True
|
285 |
+
|
286 |
+
# if results.multi_face_landmarks:
|
287 |
+
# for fl in results.multi_face_landmarks:
|
288 |
+
# startX, startY, endX, endY = get_box(fl, w, h)
|
289 |
+
# cur_face = frame_copy[startY:endY, startX: endX]
|
290 |
+
|
291 |
+
# if count_face%config_data.FRAME_DOWNSAMPLING == 0:
|
292 |
+
# cur_face_copy = pth_processing(Image.fromarray(cur_face))
|
293 |
+
# with torch.no_grad():
|
294 |
+
# features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
|
295 |
+
|
296 |
+
# # grayscale_cam = cam(input_tensor=cur_face_copy)
|
297 |
+
# # grayscale_cam = grayscale_cam[0, :]
|
298 |
+
# # cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
|
299 |
+
# # cur_face_hm = np.float32(cur_face_hm) / 255
|
300 |
+
# # heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
|
301 |
+
# # last_heatmap = heatmap
|
302 |
|
303 |
+
# if len(lstm_features) == 0:
|
304 |
+
# lstm_features = [features]*10
|
305 |
+
# else:
|
306 |
+
# lstm_features = lstm_features[1:] + [features]
|
307 |
+
|
308 |
+
# lstm_f = torch.from_numpy(np.vstack(lstm_features))
|
309 |
+
# lstm_f = torch.unsqueeze(lstm_f, 0)
|
310 |
+
# with torch.no_grad():
|
311 |
+
# output = pth_model_dynamic(lstm_f).detach().numpy()
|
312 |
+
# last_output = output
|
313 |
+
|
314 |
+
# if count_face == 0:
|
315 |
+
# count_face += 1
|
316 |
+
|
317 |
+
# else:
|
318 |
+
# if last_output is not None:
|
319 |
+
# output = last_output
|
320 |
+
# # heatmap = last_heatmap
|
321 |
+
|
322 |
+
# elif last_output is None:
|
323 |
+
# output = np.empty((1, 7))
|
324 |
+
# output[:] = np.nan
|
325 |
|
326 |
+
# probs.append(output[0])
|
327 |
+
# frames.append(count_frame)
|
328 |
+
# else:
|
329 |
+
# if last_output is not None:
|
330 |
+
# lstm_features = []
|
331 |
+
# empty = np.empty((7))
|
332 |
+
# empty[:] = np.nan
|
333 |
+
# probs.append(empty)
|
334 |
+
# frames.append(count_frame)
|
335 |
+
|
336 |
+
# if cur_face is not None:
|
337 |
+
# # heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
|
338 |
+
|
339 |
+
# cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
|
340 |
+
# cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
|
341 |
+
# cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
|
342 |
+
# vid_writer_face.write(cur_face)
|
343 |
+
# # vid_writer_hm.write(heatmap_f)
|
344 |
+
|
345 |
+
# count_frame += 1
|
346 |
+
# if count_face != 0:
|
347 |
+
# count_face += 1
|
348 |
+
|
349 |
+
# vid_writer_face.release()
|
350 |
+
# # vid_writer_hm.release()
|
351 |
+
|
352 |
+
# stat = statistics_plot(frames, probs)
|
353 |
+
|
354 |
+
# if not stat:
|
355 |
+
# return None, None
|
356 |
+
|
357 |
+
# #for debug
|
358 |
+
# print(type(frames))
|
359 |
+
# print(frames)
|
360 |
+
# print(type(probs))
|
361 |
+
# print(probs)
|
362 |
+
# # to calculate scores
|
363 |
+
# nan=float('nan')
|
364 |
+
# s1 = 0
|
365 |
+
# s2 = 0
|
366 |
+
# s3 = 0
|
367 |
+
# s4 = 0
|
368 |
+
# s5 = 0
|
369 |
+
# s6 = 0
|
370 |
+
# s7 = 0
|
371 |
+
# frames_len=len(frames)
|
372 |
+
# for i in range(frames_len):
|
373 |
+
# if np.isnan(probs[i][0]):
|
374 |
+
# frames_len=frames_len-1
|
375 |
+
# else:
|
376 |
+
# s1=s1+probs[i][0]
|
377 |
+
# s2=s2+probs[i][1]
|
378 |
+
# s3=s3+probs[i][2]
|
379 |
+
# s4=s4+probs[i][3]
|
380 |
+
# s5=s5+probs[i][4]
|
381 |
+
# s6=s6+probs[i][5]
|
382 |
+
# s7=s7+probs[i][6]
|
383 |
+
# s1=s1/frames_len
|
384 |
+
# s2=s2/frames_len
|
385 |
+
# s3=s3/frames_len
|
386 |
+
# s4=s4/frames_len
|
387 |
+
# s5=s5/frames_len
|
388 |
+
# s6=s6/frames_len
|
389 |
+
# s7=s7/frames_len
|
390 |
+
# prob=[s1,s2,s3,s4,s5,s6,s7]
|
391 |
+
# prob_str=str(prob)
|
392 |
+
# with open("local_data/data.txt",'a', encoding="utf8") as f:
|
393 |
+
# f.write(prob_str+'\n')
|
394 |
+
|
395 |
+
# with open("local_data/data.txt",'r', encoding="utf8") as f:
|
396 |
+
# for i in f:
|
397 |
+
# print(i)
|
398 |
+
# #平衡点值为零,越正越负面
|
399 |
+
# score1=0*prob[0]-8*prob[1]+4*prob[2]+0*prob[3]+2*prob[4]+2*prob[5]+4*prob[6]
|
400 |
+
# print("score1=",score1)
|
401 |
+
|
402 |
+
# #trans the audio file
|
403 |
+
# my_audio_clip = AudioFileClip(video)
|
404 |
+
# my_audio_clip.write_audiofile("newaudio.wav",ffmpeg_params=["-ac","1"])
|
405 |
+
|
406 |
+
# # Audio="data/audio.wav"
|
407 |
+
# # text,prob2,label,path=classify_continuous(Audio)
|
408 |
+
# #0是抑郁概率,1是非抑郁概率
|
409 |
+
# # score2=10*prob2[0]-10*prob[1]
|
410 |
+
# # print(prob2,label)
|
411 |
+
# # score2=0
|
412 |
+
# # print("score2=",score2)
|
413 |
+
|
414 |
+
# # text_result="demo"
|
415 |
+
# # # text_result=text_api(text)
|
416 |
+
# # print(text_result)
|
417 |
+
|
418 |
+
# return score1
|
419 |
|
|
|
|
|
420 |
|
|
|
421 |
|
422 |
+
#可以运行的代码,誊抄用
|
423 |
+
# def preprocess_video_and_rank(video):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
+
# cap = cv2.VideoCapture(video)
|
426 |
+
# w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
427 |
+
# h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
428 |
+
# fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
429 |
+
|
430 |
+
# path_save_video_face = 'result_face.mp4'
|
431 |
+
# vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
432 |
+
|
433 |
+
# # path_save_video_hm = 'result_hm.mp4'
|
434 |
+
# # vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
435 |
+
|
436 |
+
# lstm_features = []
|
437 |
+
# count_frame = 1
|
438 |
+
# count_face = 0
|
439 |
+
# probs = []
|
440 |
+
# frames = []
|
441 |
+
# last_output = None
|
442 |
+
# last_heatmap = None
|
443 |
+
# cur_face = None
|
444 |
+
|
445 |
+
# with mp_face_mesh.FaceMesh(
|
446 |
+
# max_num_faces=1,
|
447 |
+
# refine_landmarks=False,
|
448 |
+
# min_detection_confidence=0.5,
|
449 |
+
# min_tracking_confidence=0.5) as face_mesh:
|
450 |
+
|
451 |
+
# while cap.isOpened():
|
452 |
+
# _, frame = cap.read()
|
453 |
+
# if frame is None: break
|
454 |
+
|
455 |
+
# frame_copy = frame.copy()
|
456 |
+
# frame_copy.flags.writeable = False
|
457 |
+
# frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
458 |
+
# results = face_mesh.process(frame_copy)
|
459 |
+
# frame_copy.flags.writeable = True
|
460 |
+
|
461 |
+
# if results.multi_face_landmarks:
|
462 |
+
# for fl in results.multi_face_landmarks:
|
463 |
+
# startX, startY, endX, endY = get_box(fl, w, h)
|
464 |
+
# cur_face = frame_copy[startY:endY, startX: endX]
|
465 |
+
|
466 |
+
# if count_face%config_data.FRAME_DOWNSAMPLING == 0:
|
467 |
+
# cur_face_copy = pth_processing(Image.fromarray(cur_face))
|
468 |
+
# with torch.no_grad():
|
469 |
+
# features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
|
470 |
+
|
471 |
+
# # grayscale_cam = cam(input_tensor=cur_face_copy)
|
472 |
+
# # grayscale_cam = grayscale_cam[0, :]
|
473 |
+
# # cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
|
474 |
+
# # cur_face_hm = np.float32(cur_face_hm) / 255
|
475 |
+
# # heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
|
476 |
+
# # last_heatmap = heatmap
|
477 |
+
|
478 |
+
# if len(lstm_features) == 0:
|
479 |
+
# lstm_features = [features]*10
|
480 |
+
# else:
|
481 |
+
# lstm_features = lstm_features[1:] + [features]
|
482 |
+
|
483 |
+
# lstm_f = torch.from_numpy(np.vstack(lstm_features))
|
484 |
+
# lstm_f = torch.unsqueeze(lstm_f, 0)
|
485 |
+
# with torch.no_grad():
|
486 |
+
# output = pth_model_dynamic(lstm_f).detach().numpy()
|
487 |
+
# last_output = output
|
488 |
+
|
489 |
+
# if count_face == 0:
|
490 |
+
# count_face += 1
|
491 |
+
|
492 |
+
# else:
|
493 |
+
# if last_output is not None:
|
494 |
+
# output = last_output
|
495 |
+
# # heatmap = last_heatmap
|
496 |
+
|
497 |
+
# elif last_output is None:
|
498 |
+
# output = np.empty((1, 7))
|
499 |
+
# output[:] = np.nan
|
500 |
+
|
501 |
+
# probs.append(output[0])
|
502 |
+
# frames.append(count_frame)
|
503 |
+
# else:
|
504 |
+
# if last_output is not None:
|
505 |
+
# lstm_features = []
|
506 |
+
# empty = np.empty((7))
|
507 |
+
# empty[:] = np.nan
|
508 |
+
# probs.append(empty)
|
509 |
+
# frames.append(count_frame)
|
510 |
+
|
511 |
+
# if cur_face is not None:
|
512 |
+
# # heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
|
513 |
+
|
514 |
+
# cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
|
515 |
+
# cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
|
516 |
+
# cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
|
517 |
+
# vid_writer_face.write(cur_face)
|
518 |
+
# # vid_writer_hm.write(heatmap_f)
|
519 |
+
|
520 |
+
# count_frame += 1
|
521 |
+
# if count_face != 0:
|
522 |
+
# count_face += 1
|
523 |
+
|
524 |
+
# vid_writer_face.release()
|
525 |
+
# # vid_writer_hm.release()
|
526 |
+
|
527 |
+
# stat = statistics_plot(frames, probs)
|
528 |
+
|
529 |
+
# if not stat:
|
530 |
+
# return None, None
|
531 |
+
|
532 |
+
# #for debug
|
533 |
+
# print(type(frames))
|
534 |
+
# print(frames)
|
535 |
+
# print(type(probs))
|
536 |
+
# print(probs)
|
537 |
+
# # to calculate scores
|
538 |
+
# nan=float('nan')
|
539 |
+
# s1 = 0
|
540 |
+
# s2 = 0
|
541 |
+
# s3 = 0
|
542 |
+
# s4 = 0
|
543 |
+
# s5 = 0
|
544 |
+
# s6 = 0
|
545 |
+
# s7 = 0
|
546 |
+
# frames_len=len(frames)
|
547 |
+
# for i in range(frames_len):
|
548 |
+
# if np.isnan(probs[i][0]):
|
549 |
+
# frames_len=frames_len-1
|
550 |
+
# else:
|
551 |
+
# s1=s1+probs[i][0]
|
552 |
+
# s2=s2+probs[i][1]
|
553 |
+
# s3=s3+probs[i][2]
|
554 |
+
# s4=s4+probs[i][3]
|
555 |
+
# s5=s5+probs[i][4]
|
556 |
+
# s6=s6+probs[i][5]
|
557 |
+
# s7=s7+probs[i][6]
|
558 |
+
# s1=s1/frames_len
|
559 |
+
# s2=s2/frames_len
|
560 |
+
# s3=s3/frames_len
|
561 |
+
# s4=s4/frames_len
|
562 |
+
# s5=s5/frames_len
|
563 |
+
# s6=s6/frames_len
|
564 |
+
# s7=s7/frames_len
|
565 |
+
# scores=[s1,s2,s3,s4,s5,s6,s7]
|
566 |
+
# scores_str=str(scores)
|
567 |
+
# with open("local_data/data.txt",'a', encoding="utf8") as f:
|
568 |
+
# f.write(scores_str+'\n')
|
569 |
+
|
570 |
+
# with open("local_data/data.txt",'r', encoding="utf8") as f:
|
571 |
+
# for i in f:
|
572 |
+
# print(i)
|
573 |
+
|
574 |
+
|
575 |
+
# #trans the audio file
|
576 |
+
# my_audio_clip = AudioFileClip(video)
|
577 |
+
# my_audio_clip.write_audiofile("data/audio.wav",ffmpeg_params=["-ac","1"])
|
578 |
|
579 |
+
# return stat,scores_str,"data/audio.wav"
|