Liusuthu commited on
Commit
890de26
·
verified ·
1 Parent(s): b208868

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. CODE_OF_CONDUCT.md +80 -0
  2. LICENSE +21 -0
  3. README.md +3 -9
  4. __init__.py +0 -0
  5. a.wav +0 -0
  6. app.css +100 -0
  7. app.py +143 -0
  8. app_utils.py +335 -0
  9. authors.py +36 -0
  10. config.py +49 -0
  11. config.toml +10 -0
  12. description.py +17 -0
  13. face_utils.py +68 -0
  14. facebook/wav2vecChinese/README.md +61 -0
  15. facebook/wav2vecChinese/config.json +115 -0
  16. facebook/wav2vecChinese/gitattributes.txt +27 -0
  17. facebook/wav2vecChinese/hyperparams.yaml +59 -0
  18. facebook/wav2vecChinese/preprocessor_config.json +9 -0
  19. facebook/wav2vecChinese/pytorch_model.bin +3 -0
  20. flake8 +5 -0
  21. gitatt/spch/gitattributes +61 -0
  22. gitatt/vid/gitattributes +35 -0
  23. gitignore +172 -0
  24. model.py +64 -0
  25. model_architectures.py +150 -0
  26. out.wav +0 -0
  27. paraformer/__init__.py +28 -0
  28. paraformer/__pycache__/__init__.cpython-38.pyc +0 -0
  29. paraformer/__pycache__/__init__.cpython-39.pyc +0 -0
  30. paraformer/onnx/asr_offline/am.mvn +8 -0
  31. paraformer/onnx/asr_offline/config.pkl +3 -0
  32. paraformer/onnx/asr_offline/lm/lm_quant.onnx +3 -0
  33. paraformer/onnx/asr_offline/lm/seg_dict +0 -0
  34. paraformer/onnx/asr_offline/lm/tokens.txt +8404 -0
  35. paraformer/onnx/asr_offline/model_eb.onnx +3 -0
  36. paraformer/onnx/asr_offline/model_quant_1.onnx +3 -0
  37. paraformer/onnx/asr_offline/model_quant_2.onnx +3 -0
  38. paraformer/onnx/asr_offline/model_quant_3.onnx +3 -0
  39. paraformer/onnx/asr_online/am.mvn +8 -0
  40. paraformer/onnx/asr_online/config.pkl +3 -0
  41. paraformer/onnx/asr_online/decoder_quant.onnx +3 -0
  42. paraformer/onnx/asr_online/model_quant_1.onnx +3 -0
  43. paraformer/onnx/asr_online/model_quant_2.onnx +3 -0
  44. paraformer/onnx/punc/config.pkl +3 -0
  45. paraformer/onnx/punc/model_quant_0.onnx +3 -0
  46. paraformer/onnx/punc/model_quant_1.onnx +3 -0
  47. paraformer/onnx/punc/model_quant_2.onnx +3 -0
  48. paraformer/onnx/punc/model_quant_3.onnx +3 -0
  49. paraformer/onnx/punc/model_quant_4.onnx +3 -0
  50. paraformer/onnx/punc/model_quant_5.onnx +3 -0
CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ In the interest of fostering an open and welcoming environment, we as
6
+ contributors and maintainers pledge to make participation in our project and
7
+ our community a harassment-free experience for everyone, regardless of age, body
8
+ size, disability, ethnicity, sex characteristics, gender identity and expression,
9
+ level of experience, education, socio-economic status, nationality, personal
10
+ appearance, race, religion, or sexual identity and orientation.
11
+
12
+ ## Our Standards
13
+
14
+ Examples of behavior that contributes to creating a positive environment
15
+ include:
16
+
17
+ * Using welcoming and inclusive language
18
+ * Being respectful of differing viewpoints and experiences
19
+ * Gracefully accepting constructive criticism
20
+ * Focusing on what is best for the community
21
+ * Showing empathy towards other community members
22
+
23
+ Examples of unacceptable behavior by participants include:
24
+
25
+ * The use of sexualized language or imagery and unwelcome sexual attention or
26
+ advances
27
+ * Trolling, insulting/derogatory comments, and personal or political attacks
28
+ * Public or private harassment
29
+ * Publishing others' private information, such as a physical or electronic
30
+ address, without explicit permission
31
+ * Other conduct which could reasonably be considered inappropriate in a
32
+ professional setting
33
+
34
+ ## Our Responsibilities
35
+
36
+ Project maintainers are responsible for clarifying the standards of acceptable
37
+ behavior and are expected to take appropriate and fair corrective action in
38
+ response to any instances of unacceptable behavior.
39
+
40
+ Project maintainers have the right and responsibility to remove, edit, or
41
+ reject comments, commits, code, wiki edits, issues, and other contributions
42
+ that are not aligned to this Code of Conduct, or to ban temporarily or
43
+ permanently any contributor for other behaviors that they deem inappropriate,
44
+ threatening, offensive, or harmful.
45
+
46
+ ## Scope
47
+
48
+ This Code of Conduct applies within all project spaces, and it also applies when
49
+ an individual is representing the project or its community in public spaces.
50
+ Examples of representing a project or community include using an official
51
+ project e-mail address, posting via an official social media account, or acting
52
+ as an appointed representative at an online or offline event. Representation of
53
+ a project may be further defined and clarified by project maintainers.
54
+
55
+ This Code of Conduct also applies outside the project spaces when there is a
56
+ reasonable belief that an individual's behavior may have a negative impact on
57
+ the project or its community.
58
+
59
+ ## Enforcement
60
+
61
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
62
+ reported by contacting the project team at <[email protected]>. All
63
+ complaints will be reviewed and investigated and will result in a response that
64
+ is deemed necessary and appropriate to the circumstances. The project team is
65
+ obligated to maintain confidentiality with regard to the reporter of an incident.
66
+ Further details of specific enforcement policies may be posted separately.
67
+
68
+ Project maintainers who do not follow or enforce the Code of Conduct in good
69
+ faith may face temporary or permanent repercussions as determined by other
70
+ members of the project's leadership.
71
+
72
+ ## Attribution
73
+
74
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
75
+ available at <https://www.contributor-covenant.org/version/1/4/code-of-conduct.html>
76
+
77
+ [homepage]: https://www.contributor-covenant.org
78
+
79
+ For answers to common questions about this code of conduct, see
80
+ <https://www.contributor-covenant.org/faq>
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Elena Ryumina
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Combination Of Speech And Video
3
- emoji: 🐠
4
- colorFrom: blue
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 4.19.2
8
  app_file: app.py
9
- pinned: false
 
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Combination-of-Speech-and-Video
 
 
 
 
 
3
  app_file: app.py
4
+ sdk: gradio
5
+ sdk_version: 4.18.0
6
  ---
 
 
__init__.py ADDED
File without changes
a.wav ADDED
Binary file (101 kB). View file
 
app.css ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ div.app-flex-container {
2
+ display: flex;
3
+ align-items: left;
4
+ }
5
+
6
+ div.app-flex-container > a {
7
+ margin-left: 6px;
8
+ }
9
+
10
+ div.dl1 div.upload-container {
11
+ height: 350px;
12
+ max-height: 350px;
13
+ }
14
+
15
+ div.dl2 {
16
+ max-height: 200px;
17
+ }
18
+
19
+ div.dl2 img {
20
+ max-height: 200px;
21
+ }
22
+
23
+ div.dl5 {
24
+ max-height: 200px;
25
+ }
26
+
27
+ div.dl5 img {
28
+ max-height: 200px;
29
+ }
30
+
31
+ div.video1 div.video-container {
32
+ height: 500px;
33
+ }
34
+
35
+ div.video2 {
36
+ height: 200px;
37
+ }
38
+
39
+ div.video3 {
40
+ height: 200px;
41
+ }
42
+
43
+ div.video4 {
44
+ height: 200px;
45
+ }
46
+
47
+ div.stat {
48
+ height: 286px;
49
+ }
50
+
51
+ div.settings-wrapper {
52
+ display: none;
53
+ }
54
+
55
+ .submit {
56
+ display: inline-block;
57
+ padding: 10px 20px;
58
+ font-size: 16px;
59
+ font-weight: bold;
60
+ text-align: center;
61
+ text-decoration: none;
62
+ cursor: pointer;
63
+ border: var(--button-border-width) solid var(--button-primary-border-color);
64
+ background: var(--button-primary-background-fill);
65
+ color: var(--button-primary-text-color);
66
+ border-radius: 8px;
67
+ transition: all 0.3s ease;
68
+ }
69
+
70
+ .submit[disabled] {
71
+ cursor: not-allowed;
72
+ opacity: 0.6;
73
+ }
74
+
75
+ .submit:hover:not([disabled]) {
76
+ border-color: var(--button-primary-border-color-hover);
77
+ background: var(--button-primary-background-fill-hover);
78
+ color: var(--button-primary-text-color-hover);
79
+ }
80
+
81
+ .clear {
82
+ display: inline-block;
83
+ padding: 10px 20px;
84
+ font-size: 16px;
85
+ font-weight: bold;
86
+ text-align: center;
87
+ text-decoration: none;
88
+ cursor: pointer;
89
+ border-radius: 8px;
90
+ transition: all 0.3s ease;
91
+ }
92
+
93
+ .clear[disabled] {
94
+ cursor: not-allowed;
95
+ opacity: 0.6;
96
+ }
97
+
98
+ .submit:active:not([disabled]), .clear:active:not([disabled]) {
99
+ transform: scale(0.98);
100
+ }
app.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import gradio as gr
4
+ import numpy as np
5
+ import soundfile as sf
6
+ import torchaudio
7
+ from speechbrain.pretrained.interfaces import foreign_class
8
+
9
+ from app_utils import preprocess_video_and_rank
10
+ from authors import AUTHORS
11
+
12
+ # Importing necessary components for the Gradio app
13
+ from description import DESCRIPTION_DYNAMIC # , DESCRIPTION_STATIC
14
+
15
+ # import scipy.io.wavfile as wav
16
+ from paraformer import AudioReader, CttPunctuator, FSMNVad, ParaformerOffline
17
+
18
+ os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
19
+ ###########################语音部分######################################
20
+ classifier = foreign_class(
21
+ source="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP", # ".\\emotion-recognition-wav2vec2-IEMOCAP"
22
+ pymodule_file="custom_interface.py",
23
+ classname="CustomEncoderWav2vec2Classifier",
24
+ savedir="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
25
+ )
26
+ ASR_model = ParaformerOffline()
27
+ vad = FSMNVad()
28
+ punc = CttPunctuator()
29
+
30
+
31
+ def classify_continuous(audio):
32
+ print(type(audio))
33
+ print(audio)
34
+ sample_rate, signal = audio # 这是语音的输入
35
+ signal = signal.astype(np.float32)
36
+ signal /= np.max(np.abs(signal))
37
+ sf.write("a.wav", signal, sample_rate)
38
+ signal, sample_rate = torchaudio.load("a.wav")
39
+ signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
40
+ signal
41
+ )
42
+ torchaudio.save("out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
43
+ Audio = "out.wav"
44
+ speech, sample_rate = AudioReader.read_wav_file(Audio)
45
+ if signal == "none":
46
+ return "none", "none", "haha"
47
+ else:
48
+ segments = vad.segments_offline(speech)
49
+ text_results = ""
50
+ for part in segments:
51
+ _result = ASR_model.infer_offline(
52
+ speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
53
+ )
54
+ text_results += punc.punctuate(_result)[0]
55
+
56
+ out_prob, score, index, text_lab = classifier.classify_batch(signal1)
57
+ return text_results, out_prob.squeeze(0).numpy(), text_lab[-1]
58
+
59
+
60
+ #########################################视频部分###################################
61
+ def clear_dynamic_info():
62
+ return (
63
+ gr.Video(value=None),
64
+ gr.Plot(value=None),
65
+ gr.Textbox(""),
66
+ )
67
+
68
+
69
+ ##################################设置各自的app类####################
70
+ with gr.Blocks(css="app.css") as video:
71
+ with gr.Tab("Dynamic App"):
72
+ gr.Markdown(value=DESCRIPTION_DYNAMIC)
73
+ with gr.Row():
74
+ with gr.Column(scale=2):
75
+ input_video = gr.Video(
76
+ sources=["webcam", "upload"], elem_classes="video1"
77
+ )
78
+ with gr.Row():
79
+ clear_btn_dynamic = gr.Button(
80
+ value="Clear", interactive=True, scale=1
81
+ )
82
+ # submit_dynamic = gr.Button(
83
+ # value="Submit", interactive=True, scale=1, elem_classes="submit"
84
+ # )
85
+ submit_and_rank = gr.Button(
86
+ value="Score", interactive=True, scale=1, elem_classes="submit"
87
+ )
88
+ with gr.Column(scale=2, elem_classes="dl4"):
89
+ with gr.Row():
90
+ output_score = gr.Textbox(label="scores")
91
+ output_statistics = gr.Plot(
92
+ label="Statistics of emotions", elem_classes="stat"
93
+ )
94
+ gr.Examples(
95
+ [
96
+ "videos/video1.mp4",
97
+ "videos/video2.mp4",
98
+ "videos/sample.webm",
99
+ "videos/cnm.mp4",
100
+ ],
101
+ [input_video],
102
+ )
103
+
104
+ with gr.Tab("Authors"):
105
+ gr.Markdown(value=AUTHORS)
106
+
107
+ clear_btn_dynamic.click(
108
+ fn=clear_dynamic_info,
109
+ inputs=[],
110
+ outputs=[
111
+ input_video,
112
+ output_statistics,
113
+ output_score,
114
+ ],
115
+ queue=True,
116
+ )
117
+ submit_and_rank.click(
118
+ fn=preprocess_video_and_rank,
119
+ inputs=input_video,
120
+ outputs=[
121
+ output_statistics,
122
+ output_score,
123
+ ],
124
+ )
125
+
126
+ ####################################
127
+ speech = gr.Interface(
128
+ classify_continuous,
129
+ gr.Audio(sources=["microphone"]),
130
+ [
131
+ gr.Text(label="语音识别结果"),
132
+ gr.Text(label="音频情感识别1"),
133
+ gr.Text(label="音频情感识别2"),
134
+ ],
135
+ )
136
+
137
+ with gr.Blocks() as app:
138
+ with gr.Tab("语音"):
139
+ speech.render()
140
+ with gr.Tab("视频"):
141
+ video.render()
142
+
143
+ app.launch()
app_utils.py ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ File: app_utils.py
3
+ Author: Elena Ryumina and Dmitry Ryumin
4
+ Description: This module contains utility functions for facial expression recognition application.
5
+ License: MIT License
6
+ """
7
+
8
+ import torch
9
+ import numpy as np
10
+ import mediapipe as mp
11
+ from PIL import Image
12
+ import cv2
13
+ from pytorch_grad_cam.utils.image import show_cam_on_image
14
+
15
+ # Importing necessary components for the Gradio app
16
+ from model import pth_model_static, pth_model_dynamic, cam, pth_processing
17
+ from face_utils import get_box, display_info
18
+ from config import DICT_EMO, config_data
19
+ from plot import statistics_plot
20
+
21
+ mp_face_mesh = mp.solutions.face_mesh
22
+
23
+
24
+ def preprocess_image_and_predict(inp):
25
+ return None, None, None
26
+ # inp = np.array(inp)
27
+
28
+ # if inp is None:
29
+ # return None, None
30
+
31
+ # try:
32
+ # h, w = inp.shape[:2]
33
+ # except Exception:
34
+ # return None, None
35
+
36
+ # with mp_face_mesh.FaceMesh(
37
+ # max_num_faces=1,
38
+ # refine_landmarks=False,
39
+ # min_detection_confidence=0.5,
40
+ # min_tracking_confidence=0.5,
41
+ # ) as face_mesh:
42
+ # results = face_mesh.process(inp)
43
+ # if results.multi_face_landmarks:
44
+ # for fl in results.multi_face_landmarks:
45
+ # startX, startY, endX, endY = get_box(fl, w, h)
46
+ # cur_face = inp[startY:endY, startX:endX]
47
+ # cur_face_n = pth_processing(Image.fromarray(cur_face))
48
+ # with torch.no_grad():
49
+ # prediction = (
50
+ # torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
51
+ # .detach()
52
+ # .numpy()[0]
53
+ # )
54
+ # confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
55
+ # grayscale_cam = cam(input_tensor=cur_face_n)
56
+ # grayscale_cam = grayscale_cam[0, :]
57
+ # cur_face_hm = cv2.resize(cur_face,(224,224))
58
+ # cur_face_hm = np.float32(cur_face_hm) / 255
59
+ # heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
60
+
61
+ # return cur_face, heatmap, confidences
62
+
63
+
64
+ def preprocess_video_and_predict(video):
65
+
66
+ # cap = cv2.VideoCapture(video)
67
+ # w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
68
+ # h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
69
+ # fps = np.round(cap.get(cv2.CAP_PROP_FPS))
70
+
71
+ # path_save_video_face = 'result_face.mp4'
72
+ # vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
73
+
74
+ # path_save_video_hm = 'result_hm.mp4'
75
+ # vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
76
+
77
+ # lstm_features = []
78
+ # count_frame = 1
79
+ # count_face = 0
80
+ # probs = []
81
+ # frames = []
82
+ # last_output = None
83
+ # last_heatmap = None
84
+ # cur_face = None
85
+
86
+ # with mp_face_mesh.FaceMesh(
87
+ # max_num_faces=1,
88
+ # refine_landmarks=False,
89
+ # min_detection_confidence=0.5,
90
+ # min_tracking_confidence=0.5) as face_mesh:
91
+
92
+ # while cap.isOpened():
93
+ # _, frame = cap.read()
94
+ # if frame is None: break
95
+
96
+ # frame_copy = frame.copy()
97
+ # frame_copy.flags.writeable = False
98
+ # frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
99
+ # results = face_mesh.process(frame_copy)
100
+ # frame_copy.flags.writeable = True
101
+
102
+ # if results.multi_face_landmarks:
103
+ # for fl in results.multi_face_landmarks:
104
+ # startX, startY, endX, endY = get_box(fl, w, h)
105
+ # cur_face = frame_copy[startY:endY, startX: endX]
106
+
107
+ # if count_face%config_data.FRAME_DOWNSAMPLING == 0:
108
+ # cur_face_copy = pth_processing(Image.fromarray(cur_face))
109
+ # with torch.no_grad():
110
+ # features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
111
+
112
+ # grayscale_cam = cam(input_tensor=cur_face_copy)
113
+ # grayscale_cam = grayscale_cam[0, :]
114
+ # cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
115
+ # cur_face_hm = np.float32(cur_face_hm) / 255
116
+ # heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
117
+ # last_heatmap = heatmap
118
+
119
+ # if len(lstm_features) == 0:
120
+ # lstm_features = [features]*10
121
+ # else:
122
+ # lstm_features = lstm_features[1:] + [features]
123
+
124
+ # lstm_f = torch.from_numpy(np.vstack(lstm_features))
125
+ # lstm_f = torch.unsqueeze(lstm_f, 0)
126
+ # with torch.no_grad():
127
+ # output = pth_model_dynamic(lstm_f).detach().numpy()
128
+ # last_output = output
129
+
130
+ # if count_face == 0:
131
+ # count_face += 1
132
+
133
+ # else:
134
+ # if last_output is not None:
135
+ # output = last_output
136
+ # heatmap = last_heatmap
137
+
138
+ # elif last_output is None:
139
+ # output = np.empty((1, 7))
140
+ # output[:] = np.nan
141
+
142
+ # probs.append(output[0])
143
+ # frames.append(count_frame)
144
+ # else:
145
+ # if last_output is not None:
146
+ # lstm_features = []
147
+ # empty = np.empty((7))
148
+ # empty[:] = np.nan
149
+ # probs.append(empty)
150
+ # frames.append(count_frame)
151
+
152
+ # if cur_face is not None:
153
+ # heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
154
+
155
+ # cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
156
+ # cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
157
+ # cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
158
+ # vid_writer_face.write(cur_face)
159
+ # vid_writer_hm.write(heatmap_f)
160
+
161
+ # count_frame += 1
162
+ # if count_face != 0:
163
+ # count_face += 1
164
+
165
+ # vid_writer_face.release()
166
+ # vid_writer_hm.release()
167
+
168
+ # stat = statistics_plot(frames, probs)
169
+
170
+ # if not stat:
171
+ # return None, None, None, None
172
+
173
+ # # print(type(frames))
174
+ # # print(frames)
175
+ # # print(type(probs))
176
+ # # print(probs)
177
+
178
+ # return video, path_save_video_face, path_save_video_hm, stat
179
+ return None, None, None, None
180
+
181
+
182
+
183
+ #to return scores
184
+ def preprocess_video_and_rank(video):
185
+
186
+ cap = cv2.VideoCapture(video)
187
+ w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
188
+ h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
189
+ fps = np.round(cap.get(cv2.CAP_PROP_FPS))
190
+
191
+ path_save_video_face = 'result_face.mp4'
192
+ vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
193
+
194
+ # path_save_video_hm = 'result_hm.mp4'
195
+ # vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
196
+
197
+ lstm_features = []
198
+ count_frame = 1
199
+ count_face = 0
200
+ probs = []
201
+ frames = []
202
+ last_output = None
203
+ last_heatmap = None
204
+ cur_face = None
205
+
206
+ with mp_face_mesh.FaceMesh(
207
+ max_num_faces=1,
208
+ refine_landmarks=False,
209
+ min_detection_confidence=0.5,
210
+ min_tracking_confidence=0.5) as face_mesh:
211
+
212
+ while cap.isOpened():
213
+ _, frame = cap.read()
214
+ if frame is None: break
215
+
216
+ frame_copy = frame.copy()
217
+ frame_copy.flags.writeable = False
218
+ frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
219
+ results = face_mesh.process(frame_copy)
220
+ frame_copy.flags.writeable = True
221
+
222
+ if results.multi_face_landmarks:
223
+ for fl in results.multi_face_landmarks:
224
+ startX, startY, endX, endY = get_box(fl, w, h)
225
+ cur_face = frame_copy[startY:endY, startX: endX]
226
+
227
+ if count_face%config_data.FRAME_DOWNSAMPLING == 0:
228
+ cur_face_copy = pth_processing(Image.fromarray(cur_face))
229
+ with torch.no_grad():
230
+ features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
231
+
232
+ # grayscale_cam = cam(input_tensor=cur_face_copy)
233
+ # grayscale_cam = grayscale_cam[0, :]
234
+ # cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
235
+ # cur_face_hm = np.float32(cur_face_hm) / 255
236
+ # heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
237
+ # last_heatmap = heatmap
238
+
239
+ if len(lstm_features) == 0:
240
+ lstm_features = [features]*10
241
+ else:
242
+ lstm_features = lstm_features[1:] + [features]
243
+
244
+ lstm_f = torch.from_numpy(np.vstack(lstm_features))
245
+ lstm_f = torch.unsqueeze(lstm_f, 0)
246
+ with torch.no_grad():
247
+ output = pth_model_dynamic(lstm_f).detach().numpy()
248
+ last_output = output
249
+
250
+ if count_face == 0:
251
+ count_face += 1
252
+
253
+ else:
254
+ if last_output is not None:
255
+ output = last_output
256
+ # heatmap = last_heatmap
257
+
258
+ elif last_output is None:
259
+ output = np.empty((1, 7))
260
+ output[:] = np.nan
261
+
262
+ probs.append(output[0])
263
+ frames.append(count_frame)
264
+ else:
265
+ if last_output is not None:
266
+ lstm_features = []
267
+ empty = np.empty((7))
268
+ empty[:] = np.nan
269
+ probs.append(empty)
270
+ frames.append(count_frame)
271
+
272
+ if cur_face is not None:
273
+ # heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
274
+
275
+ cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
276
+ cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
277
+ cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
278
+ vid_writer_face.write(cur_face)
279
+ # vid_writer_hm.write(heatmap_f)
280
+
281
+ count_frame += 1
282
+ if count_face != 0:
283
+ count_face += 1
284
+
285
+ vid_writer_face.release()
286
+ # vid_writer_hm.release()
287
+
288
+ stat = statistics_plot(frames, probs)
289
+
290
+ if not stat:
291
+ return None, None
292
+
293
+ #for debug
294
+ print(type(frames))
295
+ print(frames)
296
+ print(type(probs))
297
+ print(probs)
298
+ # to calculate scores
299
+ nan=float('nan')
300
+ s1 = 0
301
+ s2 = 0
302
+ s3 = 0
303
+ s4 = 0
304
+ s5 = 0
305
+ s6 = 0
306
+ s7 = 0
307
+ frames_len=len(frames)
308
+ for i in range(frames_len):
309
+ if np.isnan(probs[i][0]):
310
+ frames_len=frames_len-1
311
+ else:
312
+ s1=s1+probs[i][0]
313
+ s2=s2+probs[i][1]
314
+ s3=s3+probs[i][2]
315
+ s4=s4+probs[i][3]
316
+ s5=s5+probs[i][4]
317
+ s6=s6+probs[i][5]
318
+ s7=s7+probs[i][6]
319
+ s1=s1/frames_len
320
+ s2=s2/frames_len
321
+ s3=s3/frames_len
322
+ s4=s4/frames_len
323
+ s5=s5/frames_len
324
+ s6=s6/frames_len
325
+ s7=s7/frames_len
326
+ scores=[s1,s2,s3,s4,s5,s6,s7]
327
+ scores_str=str(scores)
328
+ with open("local_data/data.txt",'a', encoding="utf8") as f:
329
+ f.write(scores_str+'\n')
330
+
331
+ with open("local_data/data.txt",'r', encoding="utf8") as f:
332
+ for i in f:
333
+ print(i)
334
+
335
+ return stat,scores_str
authors.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ File: authors.py
3
+ Author: Elena Ryumina and Dmitry Ryumin
4
+ Description: About the authors.
5
+ License: MIT License
6
+ """
7
+
8
+
9
+ AUTHORS = """
10
+ Notification: This project is copyed from https://huggingface.co/spaces/ElenaRyumina/Facial_Expression_Recognition
11
+
12
+ Authors: [Elena Ryumina](https://github.com/ElenaRyumina), [Dmitry Ryumin](https://github.com/DmitryRyumin), [Denis Dresvyanskiy](https://www.uni-ulm.de/en/nt/staff/research-assistants/dresvyanskiy/), [Maxim Markitantov](https://hci.nw.ru/en/employees/10) and [Alexey Karpov](https://hci.nw.ru/en/employees/1)
13
+
14
+ Authorship contribution:
15
+
16
+ App developers: ``Elena Ryumina`` and ``Dmitry Ryumin``
17
+
18
+ Methodology developers: ``Elena Ryumina``, ``Denis Dresvyanskiy`` and ``Alexey Karpov``
19
+
20
+ Model developer: ``Elena Ryumina``
21
+
22
+ TensorFlow to PyTorch model converters: ``Maxim Markitantov`` and ``Elena Ryumina``
23
+
24
+ Citation
25
+
26
+ If you are using EMO-AffectNetModel in your research, please consider to cite research [paper](https://www.sciencedirect.com/science/article/pii/S0925231222012656). Here is an example of BibTeX entry:
27
+
28
+ <div class="highlight highlight-text-bibtex notranslate position-relative overflow-auto" dir="auto"><pre><span class="pl-k">@article</span>{<span class="pl-en">RYUMINA2022</span>,
29
+ <span class="pl-s">title</span> = <span class="pl-s"><span class="pl-pds">{</span>In Search of a Robust Facial Expressions Recognition Model: A Large-Scale Visual Cross-Corpus Study<span class="pl-pds">}</span></span>,
30
+ <span class="pl-s">author</span> = <span class="pl-s"><span class="pl-pds">{</span>Elena Ryumina and Denis Dresvyanskiy and Alexey Karpov<span class="pl-pds">}</span></span>,
31
+ <span class="pl-s">journal</span> = <span class="pl-s"><span class="pl-pds">{</span>Neurocomputing<span class="pl-pds">}</span></span>,
32
+ <span class="pl-s">year</span> = <span class="pl-s"><span class="pl-pds">{</span>2022<span class="pl-pds">}</span></span>,
33
+ <span class="pl-s">doi</span> = <span class="pl-s"><span class="pl-pds">{</span>10.1016/j.neucom.2022.10.013<span class="pl-pds">}</span></span>,
34
+ <span class="pl-s">url</span> = <span class="pl-s"><span class="pl-pds">{</span>https://www.sciencedirect.com/science/article/pii/S0925231222012656<span class="pl-pds">}</span></span>,
35
+ }</div>
36
+ """
config.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ File: config.py
3
+ Author: Elena Ryumina and Dmitry Ryumin
4
+ Description: Configuration file.
5
+ License: MIT License
6
+ """
7
+
8
+ import toml
9
+ from typing import Dict
10
+ from types import SimpleNamespace
11
+
12
+
13
+ def flatten_dict(prefix: str, d: Dict) -> Dict:
14
+ result = {}
15
+
16
+ for k, v in d.items():
17
+ if isinstance(v, dict):
18
+ result.update(flatten_dict(f"{prefix}{k}_", v))
19
+ else:
20
+ result[f"{prefix}{k}"] = v
21
+
22
+ return result
23
+
24
+
25
+ config = toml.load("config.toml")
26
+
27
+ config_data = flatten_dict("", config)
28
+
29
+ config_data = SimpleNamespace(**config_data)
30
+
31
+ DICT_EMO = {
32
+ 0: "Neutral",
33
+ 1: "Happiness",
34
+ 2: "Sadness",
35
+ 3: "Surprise",
36
+ 4: "Fear",
37
+ 5: "Disgust",
38
+ 6: "Anger",
39
+ }
40
+
41
+ COLORS = {
42
+ 0: 'blue',
43
+ 1: 'orange',
44
+ 2: 'green',
45
+ 3: 'red',
46
+ 4: 'purple',
47
+ 5: 'brown',
48
+ 6: 'pink'
49
+ }
config.toml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ APP_VERSION = "0.2.0"
2
+ FRAME_DOWNSAMPLING = 5
3
+
4
+ [model_static]
5
+ url = "https://huggingface.co/ElenaRyumina/face_emotion_recognition/resolve/main/FER_static_ResNet50_AffectNet.pt"
6
+ path = "FER_static_ResNet50_AffectNet.pt"
7
+
8
+ [model_dynamic]
9
+ url = "https://huggingface.co/ElenaRyumina/face_emotion_recognition/resolve/main/FER_dinamic_LSTM_IEMOCAP.pt"
10
+ path = "FER_dinamic_LSTM_IEMOCAP.pt"
description.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ File: description.py
3
+ Author: Elena Ryumina and Dmitry Ryumin
4
+ Description: Project description for the Gradio app.
5
+ License: MIT License
6
+ """
7
+
8
+ # Importing necessary components for the Gradio app
9
+ from config import config_data
10
+
11
+ DESCRIPTION_STATIC = f"""\
12
+ # Static Facial Expression Recognition from ElenaRyumina/Facial_Expression_Recognition
13
+ """
14
+
15
+ DESCRIPTION_DYNAMIC = f"""\
16
+ # Dynamic Facial Expression Recognition from ElenaRyumina/Facial_Expression_Recognition
17
+ """
face_utils.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ File: face_utils.py
3
+ Author: Elena Ryumina and Dmitry Ryumin
4
+ Description: This module contains utility functions related to facial landmarks and image processing.
5
+ License: MIT License
6
+ """
7
+
8
+ import numpy as np
9
+ import math
10
+ import cv2
11
+
12
+
13
+ def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
14
+ x_px = min(math.floor(normalized_x * image_width), image_width - 1)
15
+ y_px = min(math.floor(normalized_y * image_height), image_height - 1)
16
+ return x_px, y_px
17
+
18
+
19
+ def get_box(fl, w, h):
20
+ idx_to_coors = {}
21
+ for idx, landmark in enumerate(fl.landmark):
22
+ landmark_px = norm_coordinates(landmark.x, landmark.y, w, h)
23
+ if landmark_px:
24
+ idx_to_coors[idx] = landmark_px
25
+
26
+ x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
27
+ y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
28
+ endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
29
+ endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])
30
+
31
+ (startX, startY) = (max(0, x_min), max(0, y_min))
32
+ (endX, endY) = (min(w - 1, endX), min(h - 1, endY))
33
+
34
+ return startX, startY, endX, endY
35
+
36
+ def display_info(img, text, margin=1.0, box_scale=1.0):
37
+ img_copy = img.copy()
38
+ img_h, img_w, _ = img_copy.shape
39
+ line_width = int(min(img_h, img_w) * 0.001)
40
+ thickness = max(int(line_width / 3), 1)
41
+
42
+ font_face = cv2.FONT_HERSHEY_SIMPLEX
43
+ font_color = (0, 0, 0)
44
+ font_scale = thickness / 1.5
45
+
46
+ t_w, t_h = cv2.getTextSize(text, font_face, font_scale, None)[0]
47
+
48
+ margin_n = int(t_h * margin)
49
+ sub_img = img_copy[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
50
+ img_w - t_w - margin_n - int(2 * t_h * box_scale): img_w - margin_n]
51
+
52
+ white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255
53
+
54
+ img_copy[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
55
+ img_w - t_w - margin_n - int(2 * t_h * box_scale):img_w - margin_n] = cv2.addWeighted(sub_img, 0.5, white_rect, .5, 1.0)
56
+
57
+ cv2.putText(img=img_copy,
58
+ text=text,
59
+ org=(img_w - t_w - margin_n - int(2 * t_h * box_scale) // 2,
60
+ 0 + margin_n + t_h + int(2 * t_h * box_scale) // 2),
61
+ fontFace=font_face,
62
+ fontScale=font_scale,
63
+ color=font_color,
64
+ thickness=thickness,
65
+ lineType=cv2.LINE_AA,
66
+ bottomLeftOrigin=False)
67
+
68
+ return img_copy
facebook/wav2vecChinese/README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ Pretrained on 10k hours WenetSpeech L subset. More details in [TencentGameMate/chinese_speech_pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain)
5
+
6
+ This model does not have a tokenizer as it was pretrained on audio alone.
7
+ In order to use this model speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data.
8
+
9
+ python package:
10
+ transformers==4.16.2
11
+
12
+ ```python
13
+
14
+
15
+ import torch
16
+ import torch.nn.functional as F
17
+ import soundfile as sf
18
+ from fairseq import checkpoint_utils
19
+
20
+ from transformers import (
21
+ Wav2Vec2FeatureExtractor,
22
+ Wav2Vec2ForPreTraining,
23
+ Wav2Vec2Model,
24
+ )
25
+ from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices
26
+
27
+ model_path=""
28
+ wav_path=""
29
+ mask_prob=0.0
30
+ mask_length=10
31
+
32
+ feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_path)
33
+ model = Wav2Vec2Model.from_pretrained(model_path)
34
+
35
+ # for pretrain: Wav2Vec2ForPreTraining
36
+ # model = Wav2Vec2ForPreTraining.from_pretrained(model_path)
37
+
38
+ model = model.to(device)
39
+ model = model.half()
40
+ model.eval()
41
+
42
+ wav, sr = sf.read(wav_path)
43
+ input_values = feature_extractor(wav, return_tensors="pt").input_values
44
+ input_values = input_values.half()
45
+ input_values = input_values.to(device)
46
+
47
+ # for Wav2Vec2ForPreTraining
48
+ # batch_size, raw_sequence_length = input_values.shape
49
+ # sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length)
50
+ # mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.0, mask_length=2)
51
+ # mask_time_indices = torch.tensor(mask_time_indices, device=input_values.device, dtype=torch.long)
52
+
53
+ with torch.no_grad():
54
+ outputs = model(input_values)
55
+ last_hidden_state = outputs.last_hidden_state
56
+
57
+ # for Wav2Vec2ForPreTraining
58
+ # outputs = model(input_values, mask_time_indices=mask_time_indices, output_hidden_states=True)
59
+ # last_hidden_state = outputs.hidden_states[-1]
60
+
61
+ ```
facebook/wav2vecChinese/config.json ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "adapter_kernel_size": 3,
4
+ "adapter_stride": 2,
5
+ "add_adapter": false,
6
+ "apply_spec_augment": true,
7
+ "architectures": [
8
+ "Wav2Vec2ForPreTraining"
9
+ ],
10
+ "attention_dropout": 0.1,
11
+ "bos_token_id": 1,
12
+ "classifier_proj_size": 256,
13
+ "codevector_dim": 768,
14
+ "contrastive_logits_temperature": 0.1,
15
+ "conv_bias": true,
16
+ "conv_dim": [
17
+ 512,
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512
24
+ ],
25
+ "conv_kernel": [
26
+ 10,
27
+ 3,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 2,
32
+ 2
33
+ ],
34
+ "conv_stride": [
35
+ 5,
36
+ 2,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2
42
+ ],
43
+ "ctc_loss_reduction": "sum",
44
+ "ctc_zero_infinity": false,
45
+ "diversity_loss_weight": 0.1,
46
+ "do_stable_layer_norm": true,
47
+ "eos_token_id": 2,
48
+ "feat_extract_activation": "gelu",
49
+ "feat_extract_dropout": 0.0,
50
+ "feat_extract_norm": "layer",
51
+ "feat_proj_dropout": 0.1,
52
+ "feat_quantizer_dropout": 0.0,
53
+ "final_dropout": 0.0,
54
+ "gradient_checkpointing": false,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.1,
57
+ "hidden_size": 1024,
58
+ "initializer_range": 0.02,
59
+ "intermediate_size": 4096,
60
+ "layer_norm_eps": 1e-05,
61
+ "layerdrop": 0.1,
62
+ "mask_channel_length": 10,
63
+ "mask_channel_min_space": 1,
64
+ "mask_channel_other": 0.0,
65
+ "mask_channel_prob": 0.0,
66
+ "mask_channel_selection": "static",
67
+ "mask_feature_length": 10,
68
+ "mask_feature_min_masks": 0,
69
+ "mask_feature_prob": 0.0,
70
+ "mask_time_length": 10,
71
+ "mask_time_min_masks": 2,
72
+ "mask_time_min_space": 1,
73
+ "mask_time_other": 0.0,
74
+ "mask_time_prob": 0.075,
75
+ "mask_time_selection": "static",
76
+ "model_type": "wav2vec2",
77
+ "num_adapter_layers": 3,
78
+ "num_attention_heads": 16,
79
+ "num_codevector_groups": 2,
80
+ "num_codevectors_per_group": 320,
81
+ "num_conv_pos_embedding_groups": 16,
82
+ "num_conv_pos_embeddings": 128,
83
+ "num_feat_extract_layers": 7,
84
+ "num_hidden_layers": 24,
85
+ "num_negatives": 100,
86
+ "output_hidden_size": 1024,
87
+ "pad_token_id": 0,
88
+ "proj_codevector_dim": 768,
89
+ "tdnn_dilation": [
90
+ 1,
91
+ 2,
92
+ 3,
93
+ 1,
94
+ 1
95
+ ],
96
+ "tdnn_dim": [
97
+ 512,
98
+ 512,
99
+ 512,
100
+ 512,
101
+ 1500
102
+ ],
103
+ "tdnn_kernel": [
104
+ 5,
105
+ 3,
106
+ 3,
107
+ 1,
108
+ 1
109
+ ],
110
+ "torch_dtype": "float32",
111
+ "transformers_version": "4.16.2",
112
+ "use_weighted_layer_sum": false,
113
+ "vocab_size": 32,
114
+ "xvector_output_dim": 512
115
+ }
facebook/wav2vecChinese/gitattributes.txt ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.model filter=lfs diff=lfs merge=lfs -text
11
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
12
+ *.onnx filter=lfs diff=lfs merge=lfs -text
13
+ *.ot filter=lfs diff=lfs merge=lfs -text
14
+ *.parquet filter=lfs diff=lfs merge=lfs -text
15
+ *.pb filter=lfs diff=lfs merge=lfs -text
16
+ *.pt filter=lfs diff=lfs merge=lfs -text
17
+ *.pth filter=lfs diff=lfs merge=lfs -text
18
+ *.rar filter=lfs diff=lfs merge=lfs -text
19
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
21
+ *.tflite filter=lfs diff=lfs merge=lfs -text
22
+ *.tgz filter=lfs diff=lfs merge=lfs -text
23
+ *.wasm filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
facebook/wav2vecChinese/hyperparams.yaml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ############################################################################
2
+ # Model: WAV2VEC base for Emotion Recognition
3
+ # ############################################################################
4
+
5
+
6
+ # Hparams NEEDED
7
+ HPARAMS_NEEDED: ["encoder_dim", "out_n_neurons", "label_encoder", "softmax"]
8
+ # Modules Needed
9
+ MODULES_NEEDED: ["wav2vec2", "avg_pool", "output_mlp"]
10
+
11
+ # Feature parameters
12
+ wav2vec2_hub: wav2vecChinese
13
+
14
+ # Pretrain folder (HuggingFace)
15
+ pretrained_path: emotion-recognition-wav2vec2-IEMOCAP
16
+
17
+ # parameters
18
+ encoder_dim: 768
19
+ out_n_neurons: 4
20
+
21
+ wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
22
+ source: D:/pycharm2020/code/yuyin_ChineseWav2vec/pretrained_models/facebook/wav2vec2-base
23
+ output_norm: True
24
+ freeze: True
25
+ save_path: wav2vec2_checkpoints
26
+
27
+ avg_pool: !new:speechbrain.nnet.pooling.StatisticsPooling
28
+ return_std: False
29
+
30
+ output_mlp: !new:speechbrain.nnet.linear.Linear
31
+ input_size: !ref <encoder_dim>
32
+ n_neurons: !ref <out_n_neurons>
33
+ bias: False
34
+
35
+ model: !new:torch.nn.ModuleList
36
+ - [!ref <output_mlp>]
37
+
38
+ modules:
39
+ wav2vec2: !ref <wav2vec2>
40
+ output_mlp: !ref <output_mlp>
41
+ avg_pool: !ref <avg_pool>
42
+
43
+ softmax: !new:speechbrain.nnet.activations.Softmax
44
+
45
+
46
+ label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder
47
+
48
+
49
+ pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
50
+ loadables:
51
+ wav2vec2: !ref <wav2vec2>
52
+ model: !ref <model>
53
+ label_encoder: !ref <label_encoder>
54
+ paths:
55
+ wav2vec2: !ref <pretrained_path>/wav2vec2.ckpt
56
+ model: !ref <pretrained_path>/model.ckpt
57
+ label_encoder: !ref <pretrained_path>/label_encoder.txt
58
+
59
+
facebook/wav2vecChinese/preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
facebook/wav2vecChinese/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8a5554a79c3bbbe76f2e43d3d4b4369c8c2abd5515e623192e0381d7e5e7b3f
3
+ size 1269726951
flake8 ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ ; https://www.flake8rules.com/
2
+
3
+ [flake8]
4
+ max-line-length = 120
5
+ ignore = E203, E402, E741, W503
gitatt/spch/gitattributes ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ scipy/fft/_pocketfft/pypocketfft.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
37
+ scipy/interpolate/_rbfinterp_pythran.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
38
+ scipy/io/_fast_matrix_market/_fmm_core.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
39
+ scipy/linalg/_flapack.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
40
+ scipy/misc/face.dat filter=lfs diff=lfs merge=lfs -text
41
+ scipy/optimize/_group_columns.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
42
+ scipy/optimize/_highs/_highs_wrapper.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
43
+ scipy/signal/_max_len_seq_inner.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
44
+ scipy/signal/_spectral.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
45
+ scipy/sparse/_sparsetools.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
46
+ scipy/spatial/_ckdtree.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
47
+ scipy/spatial/_distance_pybind.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
48
+ scipy/spatial/_qhull.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
49
+ scipy/special/_ufuncs.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
50
+ scipy/special/_ufuncs_cxx.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
51
+ scipy/special/cython_special.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
52
+ scipy/stats/_boost/beta_ufunc.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
53
+ scipy/stats/_boost/binom_ufunc.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
54
+ scipy/stats/_boost/hypergeom_ufunc.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
55
+ scipy/stats/_boost/invgauss_ufunc.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
56
+ scipy/stats/_boost/nbinom_ufunc.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
57
+ scipy/stats/_boost/ncf_ufunc.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
58
+ scipy/stats/_boost/nct_ufunc.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
59
+ scipy/stats/_boost/ncx2_ufunc.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
60
+ scipy/stats/_stats_pythran.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
61
+ scipy/stats/_unuran/unuran_wrapper.cp39-win_amd64.pyd filter=lfs diff=lfs merge=lfs -text
gitatt/vid/gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
gitignore ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Compiled source #
2
+ ###################
3
+ *.com
4
+ *.class
5
+ *.dll
6
+ *.exe
7
+ *.o
8
+ *.so
9
+ *.pyc
10
+
11
+ # Packages #
12
+ ############
13
+ # it's better to unpack these files and commit the raw source
14
+ # git has its own built in compression methods
15
+ *.7z
16
+ *.dmg
17
+ *.gz
18
+ *.iso
19
+ *.rar
20
+ #*.tar
21
+ *.zip
22
+
23
+ # Logs and databases #
24
+ ######################
25
+ *.log
26
+ *.sqlite
27
+
28
+ # OS generated files #
29
+ ######################
30
+ .DS_Store
31
+ ehthumbs.db
32
+ Icon
33
+ Thumbs.db
34
+ .tmtags
35
+ .idea
36
+ .vscode
37
+ tags
38
+ vendor.tags
39
+ tmtagsHistory
40
+ *.sublime-project
41
+ *.sublime-workspace
42
+ .bundle
43
+
44
+ # Byte-compiled / optimized / DLL files
45
+ __pycache__/
46
+ *.py[cod]
47
+ *$py.class
48
+
49
+ # C extensions
50
+ *.so
51
+
52
+ # Distribution / packaging
53
+ .Python
54
+ build/
55
+ develop-eggs/
56
+ dist/
57
+ downloads/
58
+ eggs/
59
+ .eggs/
60
+ lib/
61
+ lib64/
62
+ parts/
63
+ sdist/
64
+ var/
65
+ wheels/
66
+ pip-wheel-metadata/
67
+ share/python-wheels/
68
+ *.egg-info/
69
+ .installed.cfg
70
+ *.egg
71
+ MANIFEST
72
+ node_modules/
73
+
74
+ # PyInstaller
75
+ # Usually these files are written by a python script from a template
76
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
77
+ *.manifest
78
+ *.spec
79
+
80
+ # Installer logs
81
+ pip-log.txt
82
+ pip-delete-this-directory.txt
83
+
84
+ # Unit test / coverage reports
85
+ htmlcov/
86
+ .tox/
87
+ .nox/
88
+ .coverage
89
+ .coverage.*
90
+ .cache
91
+ nosetests.xml
92
+ coverage.xml
93
+ *.cover
94
+ .hypothesis/
95
+ .pytest_cache/
96
+
97
+ # Translations
98
+ *.mo
99
+ *.pot
100
+
101
+ # Django stuff:
102
+ *.log
103
+ local_settings.py
104
+ db.sqlite3
105
+ db.sqlite3-journal
106
+
107
+ # Flask stuff:
108
+ instance/
109
+ .webassets-cache
110
+
111
+ # Scrapy stuff:
112
+ .scrapy
113
+
114
+ # Sphinx documentation
115
+ docs/_build/
116
+
117
+ # PyBuilder
118
+ target/
119
+
120
+ # Jupyter Notebook
121
+ .ipynb_checkpoints
122
+
123
+ # IPython
124
+ profile_default/
125
+ ipython_config.py
126
+
127
+ # pyenv
128
+ .python-version
129
+
130
+ # pipenv
131
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
132
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
133
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
134
+ # install all needed dependencies.
135
+ #Pipfile.lock
136
+
137
+ # celery beat schedule file
138
+ celerybeat-schedule
139
+
140
+ # SageMath parsed files
141
+ *.sage.py
142
+
143
+ # Environments
144
+ .env
145
+ .venv
146
+ env/
147
+ venv/
148
+ ENV/
149
+ env.bak/
150
+ venv.bak/
151
+
152
+ # Spyder project settings
153
+ .spyderproject
154
+ .spyproject
155
+
156
+ # Rope project settings
157
+ .ropeproject
158
+
159
+ # mkdocs documentation
160
+ /site
161
+
162
+ # mypy
163
+ .mypy_cache/
164
+ .dmypy.json
165
+ dmypy.json
166
+
167
+ # Pyre type checker
168
+ .pyre/
169
+
170
+ # Custom
171
+ *.pth
172
+ *.pt
model.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ File: model.py
3
+ Author: Elena Ryumina and Dmitry Ryumin
4
+ Description: This module provides functions for loading and processing a pre-trained deep learning model
5
+ for facial expression recognition.
6
+ License: MIT License
7
+ """
8
+
9
+ import torch
10
+ import requests
11
+ from PIL import Image
12
+ from torchvision import transforms
13
+ from pytorch_grad_cam import GradCAM
14
+
15
+ # Importing necessary components for the Gradio app
16
+ from config import config_data
17
+ from model_architectures import ResNet50, LSTMPyTorch
18
+
19
+
20
+ def load_model(model_url, model_path):
21
+ try:
22
+ with requests.get(model_url, stream=True) as response:
23
+ with open(model_path, "wb") as file:
24
+ for chunk in response.iter_content(chunk_size=8192):
25
+ file.write(chunk)
26
+ return model_path
27
+ except Exception as e:
28
+ print(f"Error loading model: {e}")
29
+ return None
30
+
31
+ path_static = load_model(config_data.model_static_url, config_data.model_static_path)
32
+ pth_model_static = ResNet50(7, channels=3)
33
+ pth_model_static.load_state_dict(torch.load(path_static))
34
+ pth_model_static.eval()
35
+
36
+ path_dynamic = load_model(config_data.model_dynamic_url, config_data.model_dynamic_path)
37
+ pth_model_dynamic = LSTMPyTorch()
38
+ pth_model_dynamic.load_state_dict(torch.load(path_dynamic))
39
+ pth_model_dynamic.eval()
40
+
41
+ target_layers = [pth_model_static.layer4]
42
+ cam = GradCAM(model=pth_model_static, target_layers=target_layers)
43
+
44
+ def pth_processing(fp):
45
+ class PreprocessInput(torch.nn.Module):
46
+ def init(self):
47
+ super(PreprocessInput, self).init()
48
+
49
+ def forward(self, x):
50
+ x = x.to(torch.float32)
51
+ x = torch.flip(x, dims=(0,))
52
+ x[0, :, :] -= 91.4953
53
+ x[1, :, :] -= 103.8827
54
+ x[2, :, :] -= 131.0912
55
+ return x
56
+
57
+ def get_img_torch(img, target_size=(224, 224)):
58
+ transform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()])
59
+ img = img.resize(target_size, Image.Resampling.NEAREST)
60
+ img = transform(img)
61
+ img = torch.unsqueeze(img, 0)
62
+ return img
63
+
64
+ return get_img_torch(fp)
model_architectures.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ File: model.py
3
+ Author: Elena Ryumina and Dmitry Ryumin
4
+ Description: This module provides model architectures.
5
+ License: MIT License
6
+ """
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ import math
12
+
13
+ class Bottleneck(nn.Module):
14
+ expansion = 4
15
+ def __init__(self, in_channels, out_channels, i_downsample=None, stride=1):
16
+ super(Bottleneck, self).__init__()
17
+
18
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias=False)
19
+ self.batch_norm1 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)
20
+
21
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding='same', bias=False)
22
+ self.batch_norm2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)
23
+
24
+ self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0, bias=False)
25
+ self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion, eps=0.001, momentum=0.99)
26
+
27
+ self.i_downsample = i_downsample
28
+ self.stride = stride
29
+ self.relu = nn.ReLU()
30
+
31
+ def forward(self, x):
32
+ identity = x.clone()
33
+ x = self.relu(self.batch_norm1(self.conv1(x)))
34
+
35
+ x = self.relu(self.batch_norm2(self.conv2(x)))
36
+
37
+ x = self.conv3(x)
38
+ x = self.batch_norm3(x)
39
+
40
+ #downsample if needed
41
+ if self.i_downsample is not None:
42
+ identity = self.i_downsample(identity)
43
+ #add identity
44
+ x+=identity
45
+ x=self.relu(x)
46
+
47
+ return x
48
+
49
+ class Conv2dSame(torch.nn.Conv2d):
50
+
51
+ def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int:
52
+ return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)
53
+
54
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
55
+ ih, iw = x.size()[-2:]
56
+
57
+ pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0])
58
+ pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1])
59
+
60
+ if pad_h > 0 or pad_w > 0:
61
+ x = F.pad(
62
+ x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
63
+ )
64
+ return F.conv2d(
65
+ x,
66
+ self.weight,
67
+ self.bias,
68
+ self.stride,
69
+ self.padding,
70
+ self.dilation,
71
+ self.groups,
72
+ )
73
+
74
+ class ResNet(nn.Module):
75
+ def __init__(self, ResBlock, layer_list, num_classes, num_channels=3):
76
+ super(ResNet, self).__init__()
77
+ self.in_channels = 64
78
+
79
+ self.conv_layer_s2_same = Conv2dSame(num_channels, 64, 7, stride=2, groups=1, bias=False)
80
+ self.batch_norm1 = nn.BatchNorm2d(64, eps=0.001, momentum=0.99)
81
+ self.relu = nn.ReLU()
82
+ self.max_pool = nn.MaxPool2d(kernel_size = 3, stride=2)
83
+
84
+ self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64, stride=1)
85
+ self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2)
86
+ self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2)
87
+ self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2)
88
+
89
+ self.avgpool = nn.AdaptiveAvgPool2d((1,1))
90
+ self.fc1 = nn.Linear(512*ResBlock.expansion, 512)
91
+ self.relu1 = nn.ReLU()
92
+ self.fc2 = nn.Linear(512, num_classes)
93
+
94
+ def extract_features(self, x):
95
+ x = self.relu(self.batch_norm1(self.conv_layer_s2_same(x)))
96
+ x = self.max_pool(x)
97
+ # print(x.shape)
98
+ x = self.layer1(x)
99
+ x = self.layer2(x)
100
+ x = self.layer3(x)
101
+ x = self.layer4(x)
102
+
103
+ x = self.avgpool(x)
104
+ x = x.reshape(x.shape[0], -1)
105
+ x = self.fc1(x)
106
+ return x
107
+
108
+ def forward(self, x):
109
+ x = self.extract_features(x)
110
+ x = self.relu1(x)
111
+ x = self.fc2(x)
112
+ return x
113
+
114
+ def _make_layer(self, ResBlock, blocks, planes, stride=1):
115
+ ii_downsample = None
116
+ layers = []
117
+
118
+ if stride != 1 or self.in_channels != planes*ResBlock.expansion:
119
+ ii_downsample = nn.Sequential(
120
+ nn.Conv2d(self.in_channels, planes*ResBlock.expansion, kernel_size=1, stride=stride, bias=False, padding=0),
121
+ nn.BatchNorm2d(planes*ResBlock.expansion, eps=0.001, momentum=0.99)
122
+ )
123
+
124
+ layers.append(ResBlock(self.in_channels, planes, i_downsample=ii_downsample, stride=stride))
125
+ self.in_channels = planes*ResBlock.expansion
126
+
127
+ for i in range(blocks-1):
128
+ layers.append(ResBlock(self.in_channels, planes))
129
+
130
+ return nn.Sequential(*layers)
131
+
132
+ def ResNet50(num_classes, channels=3):
133
+ return ResNet(Bottleneck, [3,4,6,3], num_classes, channels)
134
+
135
+
136
+ class LSTMPyTorch(nn.Module):
137
+ def __init__(self):
138
+ super(LSTMPyTorch, self).__init__()
139
+
140
+ self.lstm1 = nn.LSTM(input_size=512, hidden_size=512, batch_first=True, bidirectional=False)
141
+ self.lstm2 = nn.LSTM(input_size=512, hidden_size=256, batch_first=True, bidirectional=False)
142
+ self.fc = nn.Linear(256, 7)
143
+ self.softmax = nn.Softmax(dim=1)
144
+
145
+ def forward(self, x):
146
+ x, _ = self.lstm1(x)
147
+ x, _ = self.lstm2(x)
148
+ x = self.fc(x[:, -1, :])
149
+ x = self.softmax(x)
150
+ return x
out.wav ADDED
Binary file (36.5 kB). View file
 
paraformer/__init__.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding:utf-8 -*-
2
+ # @FileName :__init__.py.py
3
+ # @Time :2023/8/8 17:49
4
+ # @Author :lovemefan
5
+ # @Email :[email protected]
6
+ import os
7
+
8
+ from .runtime.python.asr_all_in_one import AsrAllInOne
9
+ from .runtime.python.cttPunctuator import CttPunctuator
10
+ from .runtime.python.fsmnVadInfer import FSMNVad, FSMNVadOnline
11
+ from .runtime.python.paraformerInfer import ParaformerOffline, ParaformerOnline
12
+ from .runtime.python.svInfer import SpeakerVerificationInfer
13
+ from .runtime.python.utils.audioHelper import AudioReader
14
+ from .runtime.python.utils.logger import (DEFAULT_FILEHANDLER_FORMAT,
15
+ DEFAULT_STDOUT_FORMAT)
16
+
17
+ __all__ = [
18
+ "ParaformerOnline",
19
+ "ParaformerOffline",
20
+ "AsrAllInOne",
21
+ "FSMNVad",
22
+ "FSMNVadOnline",
23
+ "CttPunctuator",
24
+ "SpeakerVerificationInfer",
25
+ "AudioReader",
26
+ "DEFAULT_FILEHANDLER_FORMAT",
27
+ "DEFAULT_STDOUT_FORMAT",
28
+ ]
paraformer/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (823 Bytes). View file
 
paraformer/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (771 Bytes). View file
 
paraformer/onnx/asr_offline/am.mvn ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <Nnet>
2
+ <Splice> 560 560
3
+ [ 0 ]
4
+ <AddShift> 560 560
5
+ <LearnRateCoef> 0 [ -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 ]
6
+ <Rescale> 560 560
7
+ <LearnRateCoef> 0 [ 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 ]
8
+ </Nnet>
paraformer/onnx/asr_offline/config.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:611434ec9f8f436d36ad6ae37881fa306043ad9882aa4480be02950dcb54bc70
3
+ size 53930
paraformer/onnx/asr_offline/lm/lm_quant.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac614b986386d4201d93f10fbf68a08eb4bb2ed4187d73f7ff299749f2c93a98
3
+ size 73459657
paraformer/onnx/asr_offline/lm/seg_dict ADDED
The diff for this file is too large to render. See raw diff
 
paraformer/onnx/asr_offline/lm/tokens.txt ADDED
@@ -0,0 +1,8404 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <blank>
2
+ <s>
3
+ </s>
4
+ and@@
5
+
6
+
7
+
8
+
9
+
10
+
11
+
12
+
13
+
14
+
15
+
16
+
17
+
18
+
19
+
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+ price
29
+
30
+
31
+
32
+
33
+
34
+
35
+
36
+
37
+
38
+
39
+
40
+ these
41
+
42
+
43
+ do@@
44
+
45
+
46
+
47
+
48
+
49
+
50
+ ps
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+ gr@@
77
+
78
+
79
+
80
+
81
+
82
+
83
+
84
+
85
+
86
+ ing
87
+
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+ ness
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+
107
+
108
+
109
+
110
+ k
111
+
112
+ de
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+ per
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+ ore
148
+
149
+
150
+
151
+
152
+
153
+ comp@@
154
+
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+ ic@@
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
177
+ to@@
178
+
179
+
180
+
181
+
182
+ n@@
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+
192
+ nu@@
193
+
194
+ by
195
+
196
+
197
+
198
+
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+ tting
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+ times
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+
238
+ tu@@
239
+
240
+
241
+ minu@@
242
+
243
+
244
+
245
+
246
+
247
+
248
+ any@@
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+
265
+
266
+
267
+
268
+ pp@@
269
+
270
+
271
+
272
+
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+ few
285
+
286
+
287
+
288
+ for
289
+
290
+
291
+
292
+
293
+
294
+
295
+
296
+
297
+
298
+ with@@
299
+
300
+
301
+
302
+
303
+ id
304
+ aga@@
305
+
306
+
307
+
308
+
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+
317
+
318
+ an
319
+
320
+
321
+
322
+
323
+ ite
324
+
325
+ ele@@
326
+
327
+
328
+
329
+
330
+
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+
350
+
351
+ cer@@
352
+ here
353
+
354
+
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+ ou@@
364
+
365
+
366
+
367
+
368
+ bre@@
369
+
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+ clu@@
379
+
380
+
381
+
382
+
383
+
384
+
385
+ 0@@
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+
395
+ ts
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+
406
+
407
+
408
+
409
+
410
+
411
+ 绿
412
+
413
+
414
+ time
415
+
416
+ too
417
+
418
+
419
+
420
+
421
+
422
+
423
+ bi@@
424
+
425
+
426
+ ine
427
+
428
+ old
429
+
430
+
431
+ ling
432
+
433
+
434
+ prob@@
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+ bo@@
443
+
444
+
445
+
446
+
447
+
448
+
449
+
450
+
451
+
452
+
453
+
454
+
455
+ ich
456
+
457
+
458
+
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+
467
+
468
+
469
+ da@@
470
+ w
471
+
472
+
473
+
474
+
475
+ while
476
+
477
+
478
+
479
+ ct@@
480
+
481
+
482
+
483
+
484
+ pres@@
485
+
486
+
487
+
488
+ ter@@
489
+
490
+
491
+
492
+
493
+
494
+
495
+ bas@@
496
+
497
+
498
+
499
+
500
+
501
+
502
+ cor@@
503
+
504
+
505
+
506
+
507
+ inn
508
+
509
+
510
+
511
+
512
+
513
+ ged
514
+
515
+ put
516
+
517
+
518
+
519
+
520
+
521
+
522
+
523
+
524
+
525
+
526
+
527
+
528
+
529
+
530
+
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+ mis@@
540
+
541
+
542
+ jo@@
543
+ ke@@
544
+
545
+
546
+
547
+
548
+
549
+
550
+
551
+
552
+
553
+
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+ bri@@
569
+
570
+
571
+
572
+
573
+
574
+
575
+
576
+
577
+
578
+
579
+
580
+
581
+
582
+
583
+ lar@@
584
+
585
+
586
+ meeting
587
+ tter
588
+
589
+
590
+
591
+
592
+
593
+ ate
594
+
595
+
596
+ will
597
+ not
598
+
599
+
600
+
601
+
602
+
603
+
604
+
605
+
606
+
607
+
608
+
609
+
610
+
611
+ iting
612
+
613
+
614
+
615
+
616
+ our
617
+
618
+ venue
619
+
620
+
621
+
622
+
623
+
624
+
625
+
626
+
627
+
628
+
629
+
630
+
631
+
632
+ said
633
+
634
+ bus@@
635
+
636
+
637
+
638
+
639
+
640
+
641
+
642
+
643
+
644
+
645
+
646
+
647
+
648
+ hotels
649
+
650
+
651
+
652
+
653
+
654
+
655
+
656
+
657
+
658
+ er@@
659
+
660
+
661
+
662
+
663
+
664
+
665
+
666
+
667
+
668
+
669
+ wal@@
670
+
671
+
672
+
673
+
674
+ ction
675
+
676
+
677
+
678
+
679
+
680
+
681
+
682
+
683
+
684
+
685
+
686
+
687
+
688
+ cre@@
689
+
690
+
691
+
692
+
693
+
694
+
695
+
696
+
697
+
698
+
699
+
700
+
701
+
702
+ ns
703
+ market
704
+
705
+
706
+
707
+
708
+
709
+ is@@
710
+
711
+
712
+
713
+
714
+
715
+
716
+
717
+
718
+
719
+
720
+
721
+
722
+
723
+
724
+
725
+
726
+
727
+
728
+
729
+
730
+ ol@@
731
+
732
+
733
+
734
+
735
+ el
736
+
737
+
738
+
739
+
740
+
741
+
742
+
743
+
744
+
745
+
746
+ what
747
+
748
+
749
+
750
+
751
+
752
+ ri@@
753
+
754
+
755
+
756
+
757
+
758
+
759
+
760
+
761
+
762
+ ob@@
763
+
764
+
765
+
766
+
767
+
768
+
769
+ inter@@
770
+
771
+
772
+
773
+ if
774
+
775
+
776
+
777
+
778
+
779
+
780
+
781
+
782
+
783
+
784
+
785
+
786
+
787
+
788
+
789
+ r
790
+ her
791
+
792
+
793
+
794
+
795
+
796
+
797
+ twenty
798
+ ni@@
799
+
800
+
801
+
802
+
803
+
804
+
805
+ within
806
+
807
+ cted
808
+
809
+
810
+
811
+ inte@@
812
+
813
+
814
+
815
+
816
+
817
+
818
+
819
+
820
+
821
+
822
+
823
+
824
+ hard
825
+
826
+
827
+ ved
828
+ oo@@
829
+ used
830
+
831
+
832
+
833
+
834
+
835
+ char@@
836
+ we
837
+
838
+ ss@@
839
+
840
+
841
+
842
+
843
+
844
+
845
+
846
+
847
+ il
848
+
849
+
850
+
851
+ bir@@
852
+ ges
853
+
854
+
855
+
856
+ sal@@
857
+
858
+
859
+
860
+
861
+
862
+
863
+
864
+
865
+ sh@@
866
+ fore
867
+ mat@@
868
+
869
+
870
+
871
+
872
+
873
+ can@@
874
+ eng
875
+ know
876
+
877
+
878
+ tou@@
879
+
880
+
881
+
882
+ sha@@
883
+
884
+
885
+
886
+
887
+
888
+
889
+
890
+
891
+
892
+
893
+
894
+ dre@@
895
+
896
+
897
+
898
+
899
+
900
+
901
+
902
+
903
+
904
+
905
+ al
906
+
907
+
908
+
909
+
910
+
911
+
912
+
913
+
914
+
915
+
916
+ 稿
917
+
918
+
919
+
920
+
921
+ chic@@
922
+
923
+
924
+
925
+
926
+
927
+ har@@
928
+
929
+
930
+ i
931
+
932
+
933
+
934
+
935
+ why
936
+ tic
937
+
938
+
939
+
940
+
941
+ x
942
+
943
+
944
+
945
+
946
+
947
+
948
+
949
+
950
+
951
+ ance
952
+
953
+
954
+
955
+
956
+
957
+
958
+
959
+
960
+
961
+
962
+
963
+
964
+
965
+
966
+
967
+
968
+ gh@@
969
+
970
+
971
+
972
+
973
+ ah
974
+
975
+
976
+
977
+
978
+
979
+
980
+
981
+ who
982
+
983
+
984
+
985
+
986
+
987
+ avenue
988
+
989
+ that's
990
+
991
+
992
+
993
+
994
+ ���
995
+ que@@
996
+
997
+
998
+
999
+
1000
+
1001
+
1002
+
1003
+ ir
1004
+
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+
1013
+
1014
+
1015
+
1016
+
1017
+
1018
+
1019
+
1020
+
1021
+
1022
+
1023
+
1024
+
1025
+
1026
+
1027
+ eng@@
1028
+
1029
+
1030
+
1031
+
1032
+ 轿
1033
+
1034
+
1035
+ ken
1036
+
1037
+
1038
+
1039
+
1040
+
1041
+
1042
+
1043
+
1044
+
1045
+
1046
+
1047
+
1048
+
1049
+
1050
+
1051
+
1052
+
1053
+
1054
+ ans@@
1055
+ no
1056
+
1057
+ fic@@
1058
+
1059
+
1060
+
1061
+
1062
+
1063
+
1064
+
1065
+
1066
+
1067
+
1068
+
1069
+
1070
+
1071
+
1072
+
1073
+
1074
+
1075
+
1076
+
1077
+
1078
+ there
1079
+
1080
+
1081
+
1082
+
1083
+
1084
+
1085
+
1086
+ even
1087
+
1088
+
1089
+
1090
+
1091
+
1092
+
1093
+
1094
+
1095
+
1096
+
1097
+
1098
+
1099
+
1100
+ sy@@
1101
+
1102
+
1103
+
1104
+
1105
+
1106
+ only
1107
+ den@@
1108
+
1109
+
1110
+
1111
+
1112
+
1113
+
1114
+
1115
+
1116
+
1117
+ 便
1118
+
1119
+
1120
+
1121
+ 尿
1122
+ find
1123
+
1124
+
1125
+
1126
+
1127
+ area
1128
+
1129
+
1130
+ af@@
1131
+
1132
+ ger
1133
+
1134
+
1135
+
1136
+
1137
+
1138
+
1139
+
1140
+
1141
+
1142
+
1143
+
1144
+
1145
+
1146
+
1147
+
1148
+
1149
+
1150
+
1151
+
1152
+
1153
+
1154
+
1155
+
1156
+
1157
+
1158
+
1159
+ comm@@
1160
+
1161
+
1162
+
1163
+
1164
+
1165
+
1166
+
1167
+
1168
+ ina
1169
+
1170
+
1171
+
1172
+
1173
+
1174
+
1175
+
1176
+
1177
+
1178
+
1179
+
1180
+
1181
+ need
1182
+
1183
+
1184
+
1185
+
1186
+
1187
+
1188
+
1189
+
1190
+
1191
+ ath
1192
+
1193
+
1194
+
1195
+
1196
+ ing@@
1197
+
1198
+
1199
+
1200
+ has
1201
+
1202
+
1203
+
1204
+
1205
+
1206
+ another
1207
+
1208
+
1209
+
1210
+
1211
+
1212
+
1213
+
1214
+
1215
+
1216
+
1217
+
1218
+
1219
+
1220
+
1221
+
1222
+
1223
+
1224
+
1225
+
1226
+
1227
+
1228
+
1229
+
1230
+
1231
+
1232
+
1233
+
1234
+
1235
+
1236
+
1237
+
1238
+
1239
+
1240
+
1241
+
1242
+
1243
+
1244
+
1245
+
1246
+
1247
+
1248
+
1249
+
1250
+
1251
+
1252
+
1253
+ ked
1254
+ port
1255
+
1256
+
1257
+ 竿
1258
+
1259
+
1260
+
1261
+
1262
+
1263
+
1264
+ shi@@
1265
+
1266
+
1267
+
1268
+
1269
+ walk
1270
+
1271
+
1272
+
1273
+
1274
+
1275
+
1276
+
1277
+ ations
1278
+
1279
+
1280
+
1281
+
1282
+
1283
+
1284
+
1285
+
1286
+
1287
+
1288
+
1289
+
1290
+
1291
+
1292
+ does
1293
+ tes
1294
+
1295
+
1296
+
1297
+ ren@@
1298
+
1299
+ g@@
1300
+
1301
+
1302
+
1303
+
1304
+
1305
+
1306
+
1307
+
1308
+
1309
+
1310
+ int
1311
+ use
1312
+
1313
+
1314
+
1315
+
1316
+
1317
+
1318
+
1319
+
1320
+
1321
+
1322
+
1323
+
1324
+
1325
+
1326
+
1327
+
1328
+
1329
+
1330
+
1331
+
1332
+
1333
+
1334
+
1335
+
1336
+
1337
+
1338
+
1339
+
1340
+ a
1341
+
1342
+
1343
+
1344
+
1345
+ rec@@
1346
+
1347
+
1348
+
1349
+
1350
+
1351
+
1352
+
1353
+
1354
+
1355
+ how
1356
+
1357
+
1358
+
1359
+
1360
+
1361
+ low@@
1362
+ ak
1363
+
1364
+
1365
+
1366
+ proble@@
1367
+ es
1368
+
1369
+
1370
+
1371
+
1372
+
1373
+
1374
+
1375
+
1376
+
1377
+
1378
+
1379
+
1380
+
1381
+
1382
+ just
1383
+
1384
+
1385
+ pl@@
1386
+
1387
+
1388
+
1389
+
1390
+
1391
+
1392
+ gra@@
1393
+
1394
+
1395
+
1396
+
1397
+
1398
+
1399
+
1400
+
1401
+
1402
+ stu@@
1403
+ mee@@
1404
+
1405
+
1406
+
1407
+
1408
+
1409
+ still
1410
+
1411
+ wat@@
1412
+ 4
1413
+
1414
+
1415
+
1416
+ sho@@
1417
+
1418
+
1419
+
1420
+ than
1421
+ good
1422
+ l@@
1423
+
1424
+ 忿
1425
+
1426
+
1427
+
1428
+
1429
+
1430
+
1431
+
1432
+ ue
1433
+
1434
+
1435
+
1436
+
1437
+ country
1438
+
1439
+
1440
+
1441
+
1442
+
1443
+
1444
+
1445
+
1446
+ in@@
1447
+
1448
+
1449
+
1450
+
1451
+
1452
+
1453
+
1454
+ th
1455
+
1456
+
1457
+ wom@@
1458
+
1459
+
1460
+
1461
+
1462
+
1463
+
1464
+
1465
+ thirty
1466
+
1467
+
1468
+
1469
+
1470
+
1471
+
1472
+
1473
+
1474
+ t
1475
+
1476
+
1477
+
1478
+
1479
+
1480
+ por@@
1481
+
1482
+
1483
+
1484
+
1485
+
1486
+
1487
+
1488
+ gre@@
1489
+
1490
+
1491
+
1492
+ ding
1493
+
1494
+
1495
+
1496
+ lo
1497
+
1498
+
1499
+
1500
+ lee
1501
+
1502
+ up
1503
+
1504
+
1505
+
1506
+
1507
+
1508
+
1509
+
1510
+
1511
+
1512
+
1513
+
1514
+
1515
+ ail@@
1516
+
1517
+ om@@
1518
+
1519
+
1520
+
1521
+
1522
+
1523
+
1524
+ cts
1525
+
1526
+
1527
+
1528
+ best
1529
+
1530
+
1531
+
1532
+
1533
+
1534
+
1535
+
1536
+
1537
+
1538
+
1539
+
1540
+
1541
+
1542
+
1543
+
1544
+
1545
+
1546
+
1547
+
1548
+
1549
+
1550
+
1551
+
1552
+
1553
+
1554
+
1555
+
1556
+ ear@@
1557
+
1558
+ ship
1559
+
1560
+
1561
+
1562
+
1563
+
1564
+
1565
+
1566
+
1567
+
1568
+
1569
+ thanks
1570
+
1571
+
1572
+ contin@@
1573
+
1574
+
1575
+
1576
+
1577
+ ici@@
1578
+
1579
+
1580
+
1581
+
1582
+
1583
+
1584
+
1585
+
1586
+
1587
+
1588
+
1589
+
1590
+
1591
+
1592
+
1593
+ tw@@
1594
+
1595
+
1596
+
1597
+
1598
+
1599
+
1600
+
1601
+
1602
+
1603
+
1604
+
1605
+
1606
+
1607
+
1608
+
1609
+
1610
+
1611
+
1612
+
1613
+ ku@@
1614
+
1615
+
1616
+
1617
+
1618
+
1619
+
1620
+ day
1621
+
1622
+ away
1623
+
1624
+
1625
+
1626
+
1627
+
1628
+
1629
+
1630
+
1631
+
1632
+ ces
1633
+
1634
+
1635
+
1636
+
1637
+
1638
+
1639
+
1640
+
1641
+
1642
+ fri@@
1643
+
1644
+
1645
+
1646
+
1647
+
1648
+
1649
+
1650
+ buil@@
1651
+
1652
+
1653
+
1654
+
1655
+
1656
+
1657
+
1658
+
1659
+
1660
+
1661
+
1662
+
1663
+
1664
+
1665
+
1666
+
1667
+
1668
+
1669
+
1670
+
1671
+
1672
+
1673
+
1674
+
1675
+ court
1676
+
1677
+
1678
+
1679
+
1680
+
1681
+
1682
+
1683
+
1684
+
1685
+
1686
+
1687
+
1688
+
1689
+
1690
+
1691
+
1692
+
1693
+
1694
+
1695
+
1696
+ gar@@
1697
+ ans
1698
+
1699
+
1700
+
1701
+
1702
+
1703
+
1704
+
1705
+
1706
+
1707
+
1708
+ with
1709
+
1710
+
1711
+
1712
+
1713
+
1714
+
1715
+
1716
+
1717
+
1718
+
1719
+
1720
+
1721
+
1722
+
1723
+
1724
+
1725
+ gu@@
1726
+
1727
+
1728
+
1729
+ ch@@
1730
+
1731
+
1732
+
1733
+
1734
+
1735
+
1736
+ el@@
1737
+
1738
+
1739
+
1740
+ ol
1741
+
1742
+
1743
+
1744
+ bal@@
1745
+
1746
+
1747
+
1748
+
1749
+
1750
+
1751
+
1752
+
1753
+ she
1754
+ through
1755
+
1756
+
1757
+
1758
+ se
1759
+
1760
+
1761
+ mes
1762
+
1763
+
1764
+
1765
+
1766
+
1767
+
1768
+ st@@
1769
+
1770
+
1771
+
1772
+
1773
+
1774
+
1775
+
1776
+
1777
+
1778
+
1779
+
1780
+
1781
+ lion
1782
+
1783
+
1784
+
1785
+
1786
+ pe@@
1787
+
1788
+
1789
+
1790
+
1791
+
1792
+
1793
+
1794
+ nine
1795
+
1796
+
1797
+
1798
+
1799
+
1800
+
1801
+
1802
+
1803
+
1804
+
1805
+
1806
+
1807
+
1808
+ my
1809
+
1810
+ ill
1811
+
1812
+
1813
+
1814
+
1815
+
1816
+
1817
+
1818
+
1819
+
1820
+
1821
+
1822
+
1823
+
1824
+ soon
1825
+
1826
+
1827
+
1828
+ light
1829
+
1830
+ seven@@
1831
+
1832
+
1833
+ en@@
1834
+
1835
+
1836
+
1837
+
1838
+
1839
+
1840
+
1841
+
1842
+ night
1843
+ hou@@
1844
+
1845
+
1846
+
1847
+
1848
+
1849
+ ses
1850
+
1851
+ both
1852
+
1853
+
1854
+
1855
+ led
1856
+
1857
+
1858
+
1859
+
1860
+
1861
+
1862
+
1863
+
1864
+ f@@
1865
+
1866
+
1867
+ sion
1868
+
1869
+
1870
+
1871
+
1872
+
1873
+
1874
+ thou@@
1875
+
1876
+
1877
+
1878
+
1879
+
1880
+
1881
+ ine@@
1882
+
1883
+
1884
+ -@@
1885
+
1886
+
1887
+
1888
+ national
1889
+ it@@
1890
+
1891
+ ci@@
1892
+
1893
+ l
1894
+
1895
+
1896
+
1897
+
1898
+
1899
+
1900
+
1901
+
1902
+
1903
+
1904
+ ys
1905
+
1906
+
1907
+
1908
+
1909
+ tal@@
1910
+
1911
+
1912
+
1913
+
1914
+
1915
+
1916
+
1917
+ new
1918
+
1919
+
1920
+
1921
+
1922
+
1923
+
1924
+ th@@
1925
+
1926
+ its
1927
+
1928
+ ran@@
1929
+
1930
+ eight
1931
+
1932
+
1933
+
1934
+
1935
+
1936
+
1937
+
1938
+
1939
+
1940
+
1941
+
1942
+ look
1943
+
1944
+
1945
+
1946
+
1947
+
1948
+ op@@
1949
+
1950
+
1951
+
1952
+
1953
+
1954
+
1955
+
1956
+
1957
+
1958
+
1959
+
1960
+
1961
+
1962
+ ra@@
1963
+
1964
+
1965
+
1966
+
1967
+
1968
+
1969
+
1970
+ wee@@
1971
+
1972
+ cep@@
1973
+ fron@@
1974
+
1975
+
1976
+
1977
+
1978
+
1979
+
1980
+ re@@
1981
+
1982
+
1983
+
1984
+
1985
+
1986
+
1987
+
1988
+
1989
+ ���
1990
+ 仿
1991
+
1992
+
1993
+
1994
+
1995
+ ase
1996
+ row
1997
+
1998
+ stance
1999
+
2000
+ custom@@
2001
+
2002
+
2003
+
2004
+
2005
+
2006
+
2007
+
2008
+
2009
+
2010
+
2011
+ ss
2012
+
2013
+
2014
+ spe@@
2015
+
2016
+
2017
+
2018
+
2019
+
2020
+
2021
+
2022
+ 3
2023
+
2024
+
2025
+ fif@@
2026
+
2027
+
2028
+
2029
+
2030
+
2031
+
2032
+
2033
+
2034
+
2035
+
2036
+ g
2037
+
2038
+
2039
+ ffe@@
2040
+
2041
+
2042
+
2043
+
2044
+ are@@
2045
+
2046
+
2047
+
2048
+
2049
+
2050
+
2051
+
2052
+
2053
+ fr@@
2054
+ ful
2055
+
2056
+
2057
+
2058
+ ility
2059
+
2060
+
2061
+
2062
+
2063
+
2064
+ mer@@
2065
+
2066
+
2067
+
2068
+
2069
+
2070
+ police
2071
+
2072
+
2073
+
2074
+
2075
+
2076
+
2077
+
2078
+
2079
+
2080
+
2081
+ ened
2082
+
2083
+
2084
+
2085
+
2086
+
2087
+ ld
2088
+ x@@
2089
+
2090
+
2091
+
2092
+
2093
+
2094
+
2095
+
2096
+
2097
+
2098
+ peop@@
2099
+
2100
+
2101
+
2102
+
2103
+ fro@@
2104
+
2105
+
2106
+
2107
+
2108
+
2109
+
2110
+ 娿
2111
+
2112
+
2113
+
2114
+
2115
+
2116
+
2117
+
2118
+
2119
+
2120
+
2121
+
2122
+
2123
+
2124
+
2125
+
2126
+
2127
+
2128
+
2129
+
2130
+
2131
+
2132
+
2133
+
2134
+ i'm
2135
+
2136
+
2137
+
2138
+
2139
+
2140
+
2141
+
2142
+ ster@@
2143
+
2144
+
2145
+
2146
+ ves
2147
+ again
2148
+
2149
+
2150
+
2151
+
2152
+
2153
+
2154
+
2155
+
2156
+
2157
+
2158
+
2159
+
2160
+ him
2161
+
2162
+
2163
+ 7
2164
+
2165
+
2166
+
2167
+ ment
2168
+
2169
+
2170
+ show
2171
+
2172
+ out@@
2173
+
2174
+
2175
+
2176
+
2177
+
2178
+
2179
+ 9
2180
+
2181
+
2182
+
2183
+ ture
2184
+
2185
+
2186
+
2187
+
2188
+
2189
+
2190
+
2191
+
2192
+
2193
+ pub@@
2194
+
2195
+
2196
+
2197
+
2198
+
2199
+
2200
+
2201
+
2202
+
2203
+ pool
2204
+
2205
+
2206
+
2207
+
2208
+
2209
+
2210
+
2211
+
2212
+
2213
+
2214
+
2215
+
2216
+
2217
+
2218
+
2219
+
2220
+
2221
+
2222
+
2223
+
2224
+
2225
+
2226
+
2227
+
2228
+
2229
+
2230
+
2231
+
2232
+
2233
+
2234
+
2235
+
2236
+
2237
+
2238
+
2239
+
2240
+
2241
+
2242
+
2243
+ ap@@
2244
+
2245
+
2246
+
2247
+ peri@@
2248
+
2249
+
2250
+
2251
+
2252
+
2253
+
2254
+
2255
+
2256
+ for@@
2257
+
2258
+
2259
+
2260
+
2261
+
2262
+
2263
+
2264
+
2265
+
2266
+
2267
+
2268
+
2269
+
2270
+
2271
+
2272
+ at
2273
+
2274
+
2275
+
2276
+
2277
+
2278
+
2279
+
2280
+
2281
+
2282
+
2283
+
2284
+
2285
+
2286
+
2287
+
2288
+
2289
+
2290
+
2291
+
2292
+
2293
+
2294
+
2295
+ fi
2296
+
2297
+
2298
+
2299
+
2300
+
2301
+ 齿
2302
+
2303
+
2304
+
2305
+
2306
+
2307
+
2308
+
2309
+
2310
+
2311
+
2312
+
2313
+
2314
+
2315
+
2316
+
2317
+ sure
2318
+
2319
+
2320
+
2321
+
2322
+
2323
+ som@@
2324
+
2325
+
2326
+
2327
+
2328
+
2329
+ li@@
2330
+
2331
+
2332
+
2333
+
2334
+
2335
+
2336
+ h@@
2337
+
2338
+
2339
+
2340
+
2341
+
2342
+
2343
+
2344
+
2345
+ people
2346
+
2347
+
2348
+
2349
+
2350
+
2351
+
2352
+
2353
+
2354
+
2355
+
2356
+
2357
+
2358
+
2359
+
2360
+
2361
+
2362
+ ant
2363
+
2364
+
2365
+
2366
+
2367
+ na@@
2368
+
2369
+
2370
+
2371
+
2372
+
2373
+
2374
+ 耀
2375
+
2376
+
2377
+
2378
+
2379
+
2380
+
2381
+
2382
+
2383
+
2384
+
2385
+
2386
+
2387
+
2388
+
2389
+
2390
+ as@@
2391
+
2392
+ our@@
2393
+ that
2394
+
2395
+
2396
+
2397
+
2398
+
2399
+ k@@
2400
+ teen
2401
+
2402
+ pic@@
2403
+
2404
+
2405
+
2406
+
2407
+
2408
+
2409
+
2410
+
2411
+
2412
+
2413
+
2414
+
2415
+
2416
+
2417
+ hotel
2418
+
2419
+
2420
+
2421
+
2422
+
2423
+
2424
+
2425
+
2426
+
2427
+
2428
+ long
2429
+ 广
2430
+
2431
+
2432
+ ings
2433
+ ood
2434
+
2435
+
2436
+
2437
+
2438
+
2439
+
2440
+
2441
+
2442
+
2443
+
2444
+
2445
+
2446
+
2447
+
2448
+ gh
2449
+
2450
+
2451
+
2452
+
2453
+
2454
+
2455
+
2456
+
2457
+
2458
+
2459
+
2460
+
2461
+
2462
+ where
2463
+
2464
+
2465
+
2466
+
2467
+
2468
+ cas@@
2469
+
2470
+
2471
+
2472
+
2473
+
2474
+
2475
+
2476
+
2477
+
2478
+
2479
+
2480
+ in
2481
+
2482
+ fam@@
2483
+
2484
+
2485
+
2486
+ see
2487
+
2488
+
2489
+
2490
+
2491
+
2492
+ around
2493
+
2494
+
2495
+
2496
+
2497
+ provi@@
2498
+
2499
+
2500
+
2501
+
2502
+
2503
+
2504
+
2505
+
2506
+
2507
+
2508
+
2509
+
2510
+
2511
+
2512
+
2513
+
2514
+
2515
+
2516
+
2517
+
2518
+
2519
+
2520
+
2521
+
2522
+
2523
+
2524
+
2525
+
2526
+
2527
+
2528
+
2529
+
2530
+
2531
+
2532
+
2533
+
2534
+
2535
+
2536
+
2537
+
2538
+
2539
+
2540
+ vie@@
2541
+
2542
+ first
2543
+
2544
+
2545
+
2546
+
2547
+
2548
+
2549
+
2550
+
2551
+
2552
+
2553
+
2554
+
2555
+
2556
+
2557
+
2558
+
2559
+
2560
+
2561
+
2562
+
2563
+
2564
+
2565
+
2566
+
2567
+
2568
+
2569
+
2570
+
2571
+ sed
2572
+ it
2573
+
2574
+
2575
+
2576
+
2577
+
2578
+
2579
+
2580
+
2581
+
2582
+
2583
+
2584
+
2585
+
2586
+
2587
+
2588
+
2589
+
2590
+
2591
+ tell
2592
+
2593
+ ace
2594
+
2595
+
2596
+
2597
+
2598
+
2599
+ im@@
2600
+ win@@
2601
+
2602
+
2603
+
2604
+
2605
+
2606
+ next
2607
+ expe@@
2608
+
2609
+
2610
+
2611
+ stru@@
2612
+
2613
+
2614
+
2615
+
2616
+
2617
+
2618
+
2619
+
2620
+ be
2621
+
2622
+
2623
+
2624
+
2625
+
2626
+
2627
+
2628
+
2629
+
2630
+
2631
+
2632
+
2633
+
2634
+
2635
+
2636
+
2637
+
2638
+
2639
+
2640
+
2641
+ com@@
2642
+
2643
+
2644
+ ory
2645
+
2646
+
2647
+
2648
+
2649
+ te@@
2650
+
2651
+
2652
+
2653
+
2654
+
2655
+
2656
+
2657
+
2658
+
2659
+ con@@
2660
+
2661
+ art
2662
+
2663
+
2664
+
2665
+
2666
+ rence
2667
+
2668
+
2669
+
2670
+
2671
+
2672
+
2673
+ mil@@
2674
+
2675
+
2676
+
2677
+
2678
+ sing@@
2679
+
2680
+
2681
+
2682
+
2683
+
2684
+
2685
+
2686
+
2687
+ ce
2688
+
2689
+
2690
+
2691
+
2692
+
2693
+ tely
2694
+
2695
+
2696
+
2697
+
2698
+ ong
2699
+
2700
+
2701
+ breakfast
2702
+
2703
+
2704
+
2705
+
2706
+ under@@
2707
+ tion@@
2708
+
2709
+
2710
+
2711
+
2712
+
2713
+
2714
+
2715
+
2716
+
2717
+ over@@
2718
+
2719
+
2720
+
2721
+
2722
+
2723
+
2724
+
2725
+
2726
+
2727
+
2728
+
2729
+
2730
+
2731
+
2732
+
2733
+
2734
+
2735
+
2736
+
2737
+
2738
+
2739
+ mb@@
2740
+
2741
+ 檿
2742
+
2743
+
2744
+
2745
+ can
2746
+
2747
+
2748
+
2749
+
2750
+
2751
+ rent
2752
+
2753
+
2754
+
2755
+
2756
+
2757
+ eigh@@
2758
+
2759
+
2760
+
2761
+
2762
+
2763
+ ta@@
2764
+
2765
+
2766
+
2767
+
2768
+
2769
+
2770
+ birth
2771
+
2772
+ men@@
2773
+
2774
+
2775
+
2776
+ fl@@
2777
+
2778
+
2779
+
2780
+
2781
+
2782
+
2783
+
2784
+
2785
+
2786
+
2787
+
2788
+
2789
+
2790
+
2791
+
2792
+
2793
+
2794
+
2795
+
2796
+
2797
+
2798
+
2799
+
2800
+
2801
+
2802
+
2803
+
2804
+
2805
+
2806
+
2807
+
2808
+
2809
+
2810
+
2811
+
2812
+ guest
2813
+
2814
+
2815
+
2816
+
2817
+
2818
+
2819
+
2820
+ such
2821
+
2822
+
2823
+
2824
+
2825
+
2826
+
2827
+
2828
+
2829
+
2830
+ please
2831
+
2832
+
2833
+
2834
+
2835
+
2836
+
2837
+
2838
+ 诿
2839
+
2840
+
2841
+
2842
+
2843
+
2844
+
2845
+
2846
+
2847
+
2848
+
2849
+
2850
+
2851
+
2852
+
2853
+
2854
+
2855
+
2856
+
2857
+ on
2858
+
2859
+
2860
+
2861
+
2862
+
2863
+
2864
+
2865
+
2866
+
2867
+
2868
+
2869
+
2870
+
2871
+
2872
+
2873
+
2874
+
2875
+
2876
+
2877
+
2878
+
2879
+
2880
+
2881
+
2882
+
2883
+
2884
+ ree
2885
+
2886
+
2887
+
2888
+ today
2889
+
2890
+
2891
+
2892
+
2893
+
2894
+
2895
+
2896
+
2897
+
2898
+
2899
+
2900
+ kind
2901
+
2902
+
2903
+
2904
+
2905
+
2906
+
2907
+ ated
2908
+
2909
+
2910
+
2911
+
2912
+ govern@@
2913
+
2914
+
2915
+
2916
+
2917
+
2918
+
2919
+
2920
+
2921
+
2922
+
2923
+
2924
+
2925
+
2926
+
2927
+
2928
+
2929
+
2930
+
2931
+
2932
+ sent
2933
+
2934
+ et
2935
+
2936
+
2937
+
2938
+ site
2939
+ sti@@
2940
+
2941
+ water
2942
+
2943
+
2944
+
2945
+
2946
+
2947
+
2948
+
2949
+
2950
+ ally
2951
+
2952
+
2953
+
2954
+
2955
+
2956
+
2957
+
2958
+ sa@@
2959
+
2960
+
2961
+
2962
+
2963
+
2964
+
2965
+
2966
+ ner
2967
+ ast
2968
+
2969
+
2970
+
2971
+
2972
+
2973
+
2974
+ su@@
2975
+
2976
+
2977
+
2978
+
2979
+
2980
+ rep@@
2981
+
2982
+ ther
2983
+
2984
+ ��
2985
+
2986
+
2987
+
2988
+
2989
+
2990
+
2991
+
2992
+
2993
+
2994
+
2995
+
2996
+
2997
+
2998
+ sequ@@
2999
+
3000
+
3001
+
3002
+
3003
+
3004
+
3005
+
3006
+
3007
+
3008
+
3009
+
3010
+
3011
+
3012
+
3013
+
3014
+
3015
+
3016
+ every@@
3017
+
3018
+
3019
+ ating
3020
+
3021
+
3022
+ rela@@
3023
+
3024
+
3025
+
3026
+
3027
+
3028
+
3029
+
3030
+
3031
+
3032
+
3033
+
3034
+
3035
+
3036
+
3037
+ ser@@
3038
+
3039
+
3040
+
3041
+
3042
+
3043
+
3044
+
3045
+
3046
+
3047
+
3048
+
3049
+
3050
+
3051
+
3052
+
3053
+
3054
+ te
3055
+
3056
+
3057
+
3058
+
3059
+
3060
+
3061
+
3062
+
3063
+
3064
+ tly
3065
+
3066
+ government
3067
+
3068
+
3069
+
3070
+
3071
+
3072
+
3073
+
3074
+ ound
3075
+ co@@
3076
+
3077
+
3078
+
3079
+
3080
+
3081
+
3082
+
3083
+
3084
+
3085
+
3086
+
3087
+
3088
+
3089
+
3090
+
3091
+
3092
+
3093
+
3094
+
3095
+
3096
+
3097
+
3098
+
3099
+ ma@@
3100
+
3101
+
3102
+
3103
+ 殿
3104
+
3105
+
3106
+ wr@@
3107
+
3108
+
3109
+
3110
+ americ@@
3111
+
3112
+
3113
+
3114
+
3115
+
3116
+
3117
+
3118
+
3119
+
3120
+
3121
+
3122
+
3123
+
3124
+
3125
+
3126
+ something
3127
+
3128
+
3129
+
3130
+
3131
+
3132
+
3133
+
3134
+
3135
+
3136
+
3137
+
3138
+
3139
+
3140
+
3141
+
3142
+
3143
+
3144
+
3145
+
3146
+
3147
+
3148
+
3149
+
3150
+
3151
+
3152
+
3153
+
3154
+
3155
+
3156
+
3157
+
3158
+
3159
+
3160
+ fe
3161
+
3162
+
3163
+ 0
3164
+ room
3165
+
3166
+
3167
+
3168
+
3169
+
3170
+
3171
+
3172
+ nine@@
3173
+
3174
+
3175
+
3176
+
3177
+
3178
+
3179
+ ket
3180
+
3181
+
3182
+
3183
+
3184
+ ors
3185
+
3186
+
3187
+
3188
+
3189
+
3190
+
3191
+ mp@@
3192
+
3193
+
3194
+
3195
+
3196
+
3197
+
3198
+
3199
+
3200
+
3201
+
3202
+
3203
+
3204
+
3205
+
3206
+
3207
+
3208
+
3209
+
3210
+
3211
+ cou@@
3212
+
3213
+ cen@@
3214
+
3215
+
3216
+
3217
+
3218
+ restaurant
3219
+
3220
+
3221
+
3222
+
3223
+
3224
+
3225
+
3226
+
3227
+
3228
+
3229
+
3230
+
3231
+ happ@@
3232
+
3233
+
3234
+ park
3235
+
3236
+
3237
+
3238
+ say
3239
+
3240
+
3241
+
3242
+
3243
+
3244
+
3245
+
3246
+
3247
+
3248
+
3249
+
3250
+
3251
+
3252
+
3253
+
3254
+
3255
+
3256
+
3257
+
3258
+
3259
+
3260
+
3261
+
3262
+
3263
+
3264
+
3265
+
3266
+
3267
+
3268
+
3269
+
3270
+
3271
+
3272
+
3273
+
3274
+
3275
+
3276
+
3277
+
3278
+
3279
+
3280
+
3281
+
3282
+
3283
+
3284
+
3285
+
3286
+
3287
+ tually
3288
+
3289
+
3290
+
3291
+
3292
+
3293
+
3294
+
3295
+
3296
+
3297
+
3298
+
3299
+
3300
+
3301
+
3302
+
3303
+ ce@@
3304
+
3305
+
3306
+
3307
+
3308
+
3309
+
3310
+ &
3311
+
3312
+
3313
+
3314
+
3315
+ ook
3316
+
3317
+
3318
+
3319
+
3320
+
3321
+
3322
+
3323
+ also
3324
+
3325
+
3326
+
3327
+
3328
+
3329
+
3330
+
3331
+
3332
+
3333
+ le@@
3334
+
3335
+
3336
+
3337
+
3338
+ enjoy
3339
+
3340
+
3341
+
3342
+
3343
+
3344
+
3345
+
3346
+
3347
+ like
3348
+
3349
+
3350
+
3351
+
3352
+
3353
+
3354
+
3355
+
3356
+
3357
+ get
3358
+
3359
+
3360
+
3361
+
3362
+
3363
+
3364
+
3365
+
3366
+
3367
+ war@@
3368
+
3369
+
3370
+
3371
+
3372
+
3373
+
3374
+
3375
+
3376
+
3377
+
3378
+
3379
+
3380
+
3381
+
3382
+
3383
+
3384
+
3385
+
3386
+
3387
+
3388
+
3389
+
3390
+
3391
+
3392
+
3393
+
3394
+ different
3395
+ after
3396
+
3397
+
3398
+
3399
+
3400
+ ori@@
3401
+
3402
+
3403
+
3404
+
3405
+
3406
+
3407
+
3408
+
3409
+
3410
+
3411
+
3412
+
3413
+
3414
+
3415
+
3416
+
3417
+
3418
+
3419
+
3420
+
3421
+
3422
+
3423
+
3424
+
3425
+
3426
+
3427
+
3428
+
3429
+
3430
+
3431
+
3432
+ 涿
3433
+ n't
3434
+
3435
+
3436
+
3437
+
3438
+ nice
3439
+
3440
+
3441
+
3442
+
3443
+
3444
+
3445
+
3446
+
3447
+
3448
+
3449
+ 槿
3450
+
3451
+
3452
+
3453
+
3454
+
3455
+
3456
+
3457
+
3458
+
3459
+
3460
+
3461
+
3462
+
3463
+
3464
+
3465
+
3466
+
3467
+
3468
+
3469
+
3470
+
3471
+ ple
3472
+
3473
+
3474
+
3475
+
3476
+
3477
+
3478
+
3479
+
3480
+
3481
+
3482
+
3483
+
3484
+
3485
+
3486
+
3487
+
3488
+
3489
+
3490
+
3491
+
3492
+
3493
+
3494
+
3495
+
3496
+
3497
+
3498
+
3499
+
3500
+
3501
+
3502
+ had
3503
+
3504
+
3505
+ nothing
3506
+
3507
+
3508
+
3509
+
3510
+
3511
+
3512
+
3513
+ red
3514
+
3515
+
3516
+
3517
+
3518
+
3519
+
3520
+
3521
+
3522
+
3523
+
3524
+
3525
+
3526
+
3527
+
3528
+
3529
+
3530
+
3531
+
3532
+
3533
+ sts
3534
+
3535
+
3536
+
3537
+
3538
+
3539
+
3540
+ are
3541
+
3542
+
3543
+
3544
+
3545
+
3546
+ b
3547
+ the
3548
+
3549
+
3550
+ ir@@
3551
+
3552
+ tation
3553
+
3554
+
3555
+
3556
+
3557
+
3558
+
3559
+
3560
+
3561
+
3562
+ over
3563
+
3564
+
3565
+
3566
+
3567
+ man
3568
+
3569
+
3570
+
3571
+
3572
+
3573
+
3574
+
3575
+
3576
+
3577
+
3578
+
3579
+
3580
+
3581
+ tri@@
3582
+
3583
+
3584
+
3585
+ di@@
3586
+
3587
+ 贿
3588
+
3589
+
3590
+ so
3591
+
3592
+
3593
+
3594
+
3595
+
3596
+
3597
+
3598
+
3599
+
3600
+
3601
+
3602
+
3603
+
3604
+
3605
+
3606
+
3607
+
3608
+
3609
+
3610
+
3611
+
3612
+
3613
+
3614
+ 彿
3615
+ col@@
3616
+
3617
+
3618
+
3619
+
3620
+
3621
+
3622
+
3623
+
3624
+
3625
+
3626
+
3627
+ am
3628
+
3629
+ fe@@
3630
+ zero
3631
+
3632
+
3633
+
3634
+
3635
+
3636
+
3637
+
3638
+
3639
+ sm@@
3640
+
3641
+
3642
+
3643
+
3644
+
3645
+
3646
+
3647
+
3648
+
3649
+
3650
+
3651
+ ined
3652
+ chu@@
3653
+
3654
+
3655
+
3656
+ 婿
3657
+
3658
+
3659
+
3660
+
3661
+
3662
+
3663
+
3664
+
3665
+ drive
3666
+
3667
+
3668
+
3669
+
3670
+
3671
+
3672
+ ould
3673
+
3674
+
3675
+ try
3676
+
3677
+
3678
+
3679
+
3680
+
3681
+
3682
+
3683
+ ink
3684
+ email
3685
+
3686
+
3687
+
3688
+
3689
+
3690
+
3691
+
3692
+
3693
+
3694
+
3695
+
3696
+
3697
+ ds
3698
+
3699
+
3700
+
3701
+
3702
+
3703
+
3704
+
3705
+
3706
+
3707
+
3708
+
3709
+
3710
+
3711
+
3712
+
3713
+
3714
+
3715
+
3716
+
3717
+
3718
+
3719
+
3720
+
3721
+
3722
+ ter
3723
+ che@@
3724
+
3725
+
3726
+
3727
+
3728
+
3729
+
3730
+
3731
+
3732
+
3733
+
3734
+
3735
+
3736
+
3737
+
3738
+
3739
+
3740
+
3741
+
3742
+
3743
+ ali@@
3744
+
3745
+ i@@
3746
+
3747
+ mu@@
3748
+
3749
+
3750
+
3751
+ cri@@
3752
+
3753
+
3754
+
3755
+
3756
+
3757
+
3758
+
3759
+
3760
+
3761
+
3762
+
3763
+
3764
+
3765
+
3766
+ pre@@
3767
+
3768
+
3769
+
3770
+
3771
+
3772
+
3773
+
3774
+
3775
+
3776
+
3777
+
3778
+
3779
+
3780
+
3781
+
3782
+
3783
+
3784
+
3785
+
3786
+ z
3787
+
3788
+ par@@
3789
+
3790
+
3791
+
3792
+
3793
+
3794
+ busine@@
3795
+
3796
+
3797
+
3798
+ problem
3799
+
3800
+ centr@@
3801
+ fifty
3802
+
3803
+ 𫖯
3804
+ restaurants
3805
+ beau@@
3806
+ fac@@
3807
+
3808
+
3809
+
3810
+
3811
+
3812
+
3813
+
3814
+
3815
+ ang
3816
+
3817
+
3818
+
3819
+
3820
+
3821
+
3822
+
3823
+
3824
+
3825
+ ay
3826
+
3827
+
3828
+
3829
+
3830
+
3831
+ ide@@
3832
+
3833
+
3834
+
3835
+
3836
+
3837
+
3838
+
3839
+
3840
+
3841
+
3842
+
3843
+
3844
+
3845
+
3846
+
3847
+
3848
+ 窿
3849
+
3850
+
3851
+
3852
+ 簿
3853
+
3854
+
3855
+ si@@
3856
+
3857
+
3858
+
3859
+ ty
3860
+
3861
+
3862
+
3863
+
3864
+
3865
+
3866
+
3867
+
3868
+
3869
+
3870
+
3871
+
3872
+
3873
+
3874
+
3875
+
3876
+
3877
+
3878
+
3879
+
3880
+
3881
+
3882
+
3883
+
3884
+ hi
3885
+
3886
+
3887
+
3888
+
3889
+ '
3890
+
3891
+
3892
+
3893
+
3894
+
3895
+
3896
+
3897
+
3898
+
3899
+
3900
+
3901
+
3902
+
3903
+
3904
+
3905
+
3906
+
3907
+
3908
+ ach@@
3909
+
3910
+
3911
+
3912
+
3913
+
3914
+ should
3915
+
3916
+
3917
+
3918
+
3919
+
3920
+
3921
+
3922
+
3923
+
3924
+
3925
+
3926
+
3927
+
3928
+ center
3929
+
3930
+
3931
+
3932
+
3933
+
3934
+
3935
+ ang@@
3936
+ give
3937
+
3938
+
3939
+
3940
+
3941
+
3942
+
3943
+ wit@@
3944
+
3945
+
3946
+
3947
+
3948
+
3949
+
3950
+
3951
+
3952
+
3953
+
3954
+
3955
+
3956
+
3957
+ man@@
3958
+
3959
+ money
3960
+
3961
+
3962
+
3963
+
3964
+ j@@
3965
+
3966
+
3967
+
3968
+
3969
+
3970
+
3971
+
3972
+
3973
+
3974
+
3975
+ ft
3976
+
3977
+ scho@@
3978
+
3979
+
3980
+
3981
+
3982
+
3983
+
3984
+
3985
+
3986
+
3987
+ chan@@
3988
+
3989
+
3990
+
3991
+
3992
+
3993
+ ed
3994
+
3995
+
3996
+
3997
+
3998
+
3999
+
4000
+
4001
+
4002
+ send
4003
+
4004
+
4005
+
4006
+
4007
+
4008
+
4009
+
4010
+
4011
+
4012
+
4013
+
4014
+
4015
+
4016
+
4017
+
4018
+
4019
+
4020
+
4021
+
4022
+
4023
+
4024
+
4025
+
4026
+
4027
+
4028
+ same
4029
+
4030
+
4031
+
4032
+
4033
+
4034
+
4035
+
4036
+
4037
+
4038
+
4039
+
4040
+
4041
+
4042
+
4043
+
4044
+
4045
+
4046
+ velo@@
4047
+
4048
+
4049
+ have
4050
+
4051
+
4052
+
4053
+
4054
+
4055
+ thir@@
4056
+
4057
+
4058
+ les
4059
+
4060
+
4061
+
4062
+ come
4063
+
4064
+
4065
+
4066
+
4067
+ br@@
4068
+
4069
+
4070
+
4071
+
4072
+
4073
+
4074
+
4075
+
4076
+ reas@@
4077
+
4078
+
4079
+ more
4080
+
4081
+
4082
+
4083
+
4084
+
4085
+
4086
+
4087
+
4088
+
4089
+ sit@@
4090
+
4091
+
4092
+
4093
+
4094
+
4095
+ recei@@
4096
+
4097
+
4098
+ from
4099
+
4100
+
4101
+
4102
+
4103
+
4104
+ pas@@
4105
+
4106
+
4107
+
4108
+ v@@
4109
+
4110
+ 're
4111
+
4112
+
4113
+
4114
+
4115
+
4116
+
4117
+ seven
4118
+
4119
+
4120
+
4121
+
4122
+
4123
+
4124
+
4125
+
4126
+
4127
+
4128
+
4129
+
4130
+
4131
+ 驿
4132
+ all@@
4133
+
4134
+
4135
+
4136
+
4137
+
4138
+
4139
+
4140
+ ari@@
4141
+
4142
+
4143
+
4144
+
4145
+
4146
+
4147
+
4148
+ test
4149
+
4150
+
4151
+
4152
+
4153
+
4154
+
4155
+
4156
+
4157
+
4158
+
4159
+
4160
+ 姿
4161
+
4162
+
4163
+
4164
+
4165
+
4166
+
4167
+
4168
+
4169
+
4170
+
4171
+
4172
+
4173
+ but
4174
+
4175
+
4176
+
4177
+
4178
+
4179
+
4180
+
4181
+
4182
+
4183
+
4184
+
4185
+
4186
+
4187
+
4188
+
4189
+
4190
+ 6@@
4191
+
4192
+
4193
+
4194
+
4195
+
4196
+
4197
+
4198
+
4199
+ lo@@
4200
+
4201
+
4202
+
4203
+ part@@
4204
+
4205
+
4206
+
4207
+
4208
+
4209
+
4210
+
4211
+
4212
+
4213
+
4214
+ ary
4215
+
4216
+
4217
+
4218
+
4219
+
4220
+
4221
+
4222
+
4223
+ close
4224
+
4225
+ ty@@
4226
+
4227
+
4228
+
4229
+ go@@
4230
+
4231
+
4232
+ ble
4233
+
4234
+
4235
+ qu@@
4236
+
4237
+
4238
+
4239
+
4240
+
4241
+
4242
+
4243
+
4244
+
4245
+
4246
+
4247
+ q
4248
+
4249
+
4250
+ 使
4251
+
4252
+
4253
+
4254
+
4255
+
4256
+
4257
+
4258
+
4259
+
4260
+
4261
+
4262
+
4263
+ fa@@
4264
+ w@@
4265
+
4266
+
4267
+
4268
+
4269
+ 趿
4270
+
4271
+
4272
+ last
4273
+
4274
+
4275
+
4276
+
4277
+
4278
+
4279
+
4280
+
4281
+
4282
+
4283
+
4284
+
4285
+
4286
+
4287
+
4288
+
4289
+
4290
+
4291
+
4292
+
4293
+
4294
+
4295
+
4296
+
4297
+
4298
+
4299
+
4300
+
4301
+
4302
+
4303
+
4304
+ back
4305
+
4306
+
4307
+ sou@@
4308
+
4309
+ son
4310
+
4311
+
4312
+
4313
+
4314
+
4315
+
4316
+
4317
+
4318
+
4319
+ sil
4320
+
4321
+
4322
+
4323
+
4324
+
4325
+
4326
+
4327
+
4328
+
4329
+
4330
+
4331
+
4332
+
4333
+
4334
+
4335
+
4336
+
4337
+ own
4338
+
4339
+
4340
+ ices
4341
+
4342
+
4343
+ u@@
4344
+
4345
+
4346
+
4347
+
4348
+
4349
+
4350
+
4351
+
4352
+
4353
+
4354
+
4355
+
4356
+
4357
+
4358
+
4359
+
4360
+
4361
+
4362
+
4363
+ kil@@
4364
+
4365
+
4366
+
4367
+
4368
+
4369
+ 5
4370
+ dis@@
4371
+
4372
+
4373
+
4374
+
4375
+
4376
+
4377
+
4378
+ c
4379
+
4380
+
4381
+ je@@
4382
+
4383
+ way
4384
+
4385
+
4386
+
4387
+
4388
+
4389
+
4390
+
4391
+
4392
+
4393
+
4394
+
4395
+
4396
+
4397
+
4398
+
4399
+
4400
+
4401
+
4402
+
4403
+
4404
+
4405
+
4406
+
4407
+
4408
+
4409
+
4410
+
4411
+
4412
+
4413
+
4414
+
4415
+
4416
+
4417
+
4418
+
4419
+
4420
+
4421
+
4422
+
4423
+
4424
+
4425
+
4426
+
4427
+
4428
+
4429
+
4430
+ tom@@
4431
+
4432
+
4433
+ products
4434
+
4435
+
4436
+
4437
+
4438
+
4439
+
4440
+ bu@@
4441
+
4442
+
4443
+
4444
+
4445
+
4446
+
4447
+
4448
+
4449
+
4450
+
4451
+
4452
+
4453
+ ru@@
4454
+ deta@@
4455
+
4456
+
4457
+
4458
+
4459
+
4460
+
4461
+
4462
+
4463
+
4464
+ qui@@
4465
+
4466
+
4467
+
4468
+
4469
+
4470
+
4471
+
4472
+ local
4473
+ fol@@
4474
+
4475
+
4476
+
4477
+
4478
+ du@@
4479
+
4480
+
4481
+
4482
+
4483
+
4484
+ car@@
4485
+
4486
+
4487
+
4488
+
4489
+
4490
+
4491
+
4492
+
4493
+
4494
+
4495
+ high
4496
+ ach
4497
+
4498
+
4499
+ think
4500
+ don't
4501
+
4502
+ cho@@
4503
+
4504
+
4505
+
4506
+
4507
+
4508
+
4509
+
4510
+
4511
+
4512
+
4513
+
4514
+
4515
+
4516
+ at@@
4517
+
4518
+
4519
+
4520
+
4521
+
4522
+
4523
+
4524
+
4525
+
4526
+
4527
+
4528
+
4529
+
4530
+
4531
+
4532
+
4533
+
4534
+
4535
+
4536
+
4537
+
4538
+
4539
+
4540
+
4541
+ ile
4542
+
4543
+
4544
+
4545
+
4546
+
4547
+
4548
+
4549
+ se@@
4550
+
4551
+
4552
+
4553
+
4554
+
4555
+
4556
+
4557
+
4558
+ the@@
4559
+
4560
+
4561
+
4562
+
4563
+
4564
+
4565
+ ack@@
4566
+
4567
+ res
4568
+ lot
4569
+
4570
+
4571
+ ways
4572
+
4573
+
4574
+
4575
+
4576
+
4577
+
4578
+
4579
+
4580
+ ar
4581
+
4582
+
4583
+
4584
+
4585
+
4586
+
4587
+
4588
+
4589
+ hu@@
4590
+
4591
+
4592
+
4593
+
4594
+ many
4595
+
4596
+ ned
4597
+ their
4598
+
4599
+
4600
+
4601
+
4602
+
4603
+
4604
+
4605
+
4606
+ this
4607
+
4608
+
4609
+ ton
4610
+
4611
+
4612
+
4613
+
4614
+
4615
+
4616
+
4617
+ imp@@
4618
+
4619
+
4620
+ e@@
4621
+
4622
+
4623
+
4624
+ three
4625
+
4626
+
4627
+
4628
+
4629
+
4630
+
4631
+
4632
+
4633
+
4634
+
4635
+
4636
+
4637
+
4638
+
4639
+
4640
+ inclu@@
4641
+ mo@@
4642
+
4643
+
4644
+
4645
+
4646
+ really
4647
+
4648
+ dri@@
4649
+
4650
+
4651
+
4652
+
4653
+
4654
+ up@@
4655
+
4656
+
4657
+
4658
+
4659
+
4660
+
4661
+
4662
+ indi@@
4663
+ into
4664
+
4665
+
4666
+ t@@
4667
+
4668
+
4669
+
4670
+ body
4671
+ ins
4672
+
4673
+
4674
+ down
4675
+
4676
+
4677
+
4678
+
4679
+ wa@@
4680
+
4681
+
4682
+
4683
+
4684
+ great
4685
+
4686
+
4687
+
4688
+
4689
+
4690
+
4691
+
4692
+
4693
+
4694
+ dge
4695
+
4696
+ vo@@
4697
+
4698
+
4699
+
4700
+
4701
+
4702
+ gro@@
4703
+
4704
+
4705
+ all
4706
+
4707
+
4708
+
4709
+
4710
+ two
4711
+
4712
+
4713
+
4714
+
4715
+
4716
+ it's
4717
+
4718
+
4719
+
4720
+ ies
4721
+ centre
4722
+
4723
+ 亿
4724
+
4725
+ ask
4726
+
4727
+
4728
+
4729
+
4730
+
4731
+ 椿
4732
+
4733
+
4734
+
4735
+
4736
+ diffe@@
4737
+
4738
+
4739
+
4740
+
4741
+
4742
+
4743
+
4744
+
4745
+
4746
+
4747
+
4748
+
4749
+
4750
+
4751
+
4752
+
4753
+
4754
+
4755
+
4756
+
4757
+
4758
+
4759
+
4760
+
4761
+
4762
+
4763
+
4764
+ may
4765
+
4766
+
4767
+
4768
+
4769
+
4770
+
4771
+
4772
+
4773
+
4774
+
4775
+
4776
+
4777
+
4778
+ cl@@
4779
+ hund@@
4780
+
4781
+
4782
+
4783
+
4784
+
4785
+
4786
+
4787
+
4788
+
4789
+
4790
+
4791
+
4792
+
4793
+
4794
+ forty
4795
+
4796
+
4797
+
4798
+
4799
+
4800
+
4801
+
4802
+
4803
+
4804
+
4805
+
4806
+ read@@
4807
+
4808
+
4809
+
4810
+
4811
+
4812
+
4813
+
4814
+
4815
+ chil@@
4816
+
4817
+
4818
+
4819
+
4820
+
4821
+
4822
+ der@@
4823
+
4824
+
4825
+
4826
+
4827
+
4828
+
4829
+
4830
+
4831
+
4832
+
4833
+ ms
4834
+
4835
+
4836
+
4837
+
4838
+
4839
+
4840
+
4841
+
4842
+
4843
+
4844
+
4845
+
4846
+
4847
+
4848
+ al@@
4849
+
4850
+
4851
+
4852
+
4853
+
4854
+
4855
+
4856
+
4857
+ sh
4858
+ 's
4859
+
4860
+
4861
+ ck
4862
+
4863
+
4864
+
4865
+
4866
+
4867
+ mer
4868
+
4869
+
4870
+
4871
+
4872
+
4873
+
4874
+
4875
+
4876
+
4877
+
4878
+
4879
+
4880
+
4881
+ cha@@
4882
+ small
4883
+
4884
+
4885
+
4886
+
4887
+
4888
+
4889
+
4890
+ sting
4891
+
4892
+
4893
+
4894
+
4895
+
4896
+
4897
+
4898
+
4899
+
4900
+ take
4901
+
4902
+
4903
+
4904
+
4905
+
4906
+ fast
4907
+
4908
+
4909
+
4910
+
4911
+
4912
+ well
4913
+
4914
+ he@@
4915
+
4916
+
4917
+ unk@@
4918
+
4919
+
4920
+
4921
+
4922
+
4923
+ ve
4924
+
4925
+ pay
4926
+
4927
+
4928
+
4929
+
4930
+
4931
+
4932
+ quo@@
4933
+
4934
+
4935
+
4936
+
4937
+
4938
+
4939
+
4940
+ much
4941
+ most
4942
+ now
4943
+ singapore
4944
+
4945
+
4946
+
4947
+
4948
+
4949
+
4950
+
4951
+
4952
+
4953
+
4954
+
4955
+
4956
+
4957
+
4958
+
4959
+ hote@@
4960
+
4961
+
4962
+
4963
+
4964
+
4965
+
4966
+
4967
+
4968
+
4969
+
4970
+
4971
+
4972
+
4973
+
4974
+
4975
+
4976
+
4977
+
4978
+
4979
+
4980
+
4981
+ is
4982
+
4983
+
4984
+
4985
+
4986
+
4987
+
4988
+
4989
+
4990
+
4991
+
4992
+
4993
+
4994
+
4995
+
4996
+
4997
+
4998
+
4999
+
5000
+
5001
+
5002
+
5003
+
5004
+ s@@
5005
+
5006
+
5007
+
5008
+
5009
+
5010
+
5011
+
5012
+ thank
5013
+
5014
+
5015
+
5016
+ cost
5017
+
5018
+
5019
+
5020
+ publi@@
5021
+
5022
+
5023
+
5024
+
5025
+
5026
+
5027
+
5028
+
5029
+
5030
+
5031
+ able
5032
+ ind
5033
+
5034
+
5035
+
5036
+
5037
+
5038
+
5039
+
5040
+
5041
+
5042
+ fi@@
5043
+ company
5044
+
5045
+
5046
+
5047
+
5048
+ 巿
5049
+
5050
+
5051
+
5052
+
5053
+
5054
+
5055
+
5056
+
5057
+
5058
+
5059
+
5060
+
5061
+ any
5062
+ pri@@
5063
+
5064
+
5065
+
5066
+
5067
+
5068
+
5069
+
5070
+
5071
+
5072
+
5073
+ inve@@
5074
+
5075
+ frien@@
5076
+
5077
+
5078
+
5079
+
5080
+
5081
+
5082
+ i'@@
5083
+
5084
+
5085
+ un@@
5086
+
5087
+
5088
+
5089
+ wi
5090
+
5091
+
5092
+
5093
+
5094
+
5095
+
5096
+
5097
+
5098
+
5099
+
5100
+
5101
+
5102
+
5103
+
5104
+ sk@@
5105
+
5106
+
5107
+
5108
+
5109
+
5110
+
5111
+
5112
+ ers
5113
+
5114
+
5115
+
5116
+
5117
+
5118
+
5119
+
5120
+
5121
+ oms
5122
+
5123
+ before
5124
+
5125
+
5126
+
5127
+
5128
+
5129
+
5130
+
5131
+
5132
+
5133
+
5134
+ po@@
5135
+
5136
+ year
5137
+
5138
+ pping
5139
+
5140
+
5141
+
5142
+
5143
+
5144
+
5145
+
5146
+
5147
+
5148
+
5149
+ sta@@
5150
+
5151
+
5152
+
5153
+
5154
+
5155
+
5156
+ ments
5157
+
5158
+
5159
+
5160
+
5161
+
5162
+
5163
+
5164
+
5165
+
5166
+
5167
+
5168
+
5169
+
5170
+
5171
+ ro@@
5172
+
5173
+
5174
+ tional
5175
+
5176
+
5177
+
5178
+ n
5179
+
5180
+
5181
+
5182
+
5183
+
5184
+
5185
+
5186
+
5187
+
5188
+
5189
+
5190
+
5191
+
5192
+
5193
+
5194
+
5195
+
5196
+
5197
+
5198
+ ars
5199
+
5200
+ clo@@
5201
+
5202
+
5203
+
5204
+
5205
+
5206
+
5207
+
5208
+
5209
+ 9@@
5210
+
5211
+
5212
+
5213
+ them
5214
+
5215
+
5216
+
5217
+
5218
+
5219
+
5220
+
5221
+
5222
+
5223
+
5224
+ ag@@
5225
+
5226
+
5227
+
5228
+
5229
+ supp@@
5230
+
5231
+
5232
+
5233
+
5234
+
5235
+
5236
+
5237
+
5238
+
5239
+ experi@@
5240
+
5241
+
5242
+
5243
+
5244
+ every
5245
+
5246
+
5247
+
5248
+ a@@
5249
+
5250
+
5251
+ ze
5252
+
5253
+
5254
+
5255
+
5256
+
5257
+
5258
+
5259
+ 屿
5260
+
5261
+ cont@@
5262
+
5263
+ den
5264
+
5265
+
5266
+
5267
+
5268
+
5269
+
5270
+
5271
+
5272
+
5273
+
5274
+
5275
+
5276
+ than@@
5277
+ king
5278
+
5279
+
5280
+
5281
+
5282
+
5283
+ ent
5284
+
5285
+
5286
+
5287
+
5288
+
5289
+
5290
+
5291
+
5292
+ lim
5293
+
5294
+
5295
+ we@@
5296
+
5297
+
5298
+
5299
+
5300
+
5301
+
5302
+
5303
+
5304
+
5305
+
5306
+ because
5307
+
5308
+
5309
+
5310
+
5311
+ 蹿
5312
+
5313
+
5314
+
5315
+
5316
+
5317
+
5318
+
5319
+
5320
+
5321
+ mon@@
5322
+
5323
+
5324
+
5325
+
5326
+
5327
+
5328
+ f
5329
+ near
5330
+
5331
+
5332
+ 鸿
5333
+
5334
+
5335
+
5336
+
5337
+
5338
+
5339
+ bro@@
5340
+
5341
+
5342
+ pe
5343
+
5344
+ vi@@
5345
+ jal@@
5346
+
5347
+
5348
+
5349
+
5350
+
5351
+
5352
+
5353
+
5354
+
5355
+
5356
+
5357
+
5358
+
5359
+ sen@@
5360
+ family
5361
+ 岿
5362
+
5363
+
5364
+
5365
+
5366
+
5367
+
5368
+
5369
+ dly
5370
+
5371
+
5372
+
5373
+
5374
+
5375
+
5376
+
5377
+
5378
+
5379
+
5380
+
5381
+
5382
+
5383
+
5384
+
5385
+
5386
+ ban@@
5387
+ ssi@@
5388
+
5389
+
5390
+
5391
+ y
5392
+
5393
+
5394
+
5395
+
5396
+
5397
+
5398
+
5399
+
5400
+
5401
+
5402
+
5403
+
5404
+
5405
+
5406
+
5407
+
5408
+
5409
+ ll
5410
+
5411
+
5412
+
5413
+
5414
+
5415
+
5416
+
5417
+
5418
+
5419
+
5420
+
5421
+
5422
+
5423
+
5424
+
5425
+
5426
+
5427
+
5428
+
5429
+
5430
+
5431
+
5432
+
5433
+
5434
+
5435
+
5436
+
5437
+
5438
+
5439
+
5440
+
5441
+
5442
+
5443
+
5444
+
5445
+
5446
+
5447
+
5448
+
5449
+
5450
+
5451
+
5452
+
5453
+
5454
+
5455
+
5456
+
5457
+
5458
+
5459
+
5460
+
5461
+
5462
+
5463
+
5464
+
5465
+
5466
+ things
5467
+
5468
+
5469
+
5470
+
5471
+
5472
+
5473
+ ous
5474
+
5475
+
5476
+
5477
+
5478
+
5479
+
5480
+ ning
5481
+ med
5482
+
5483
+
5484
+
5485
+
5486
+
5487
+
5488
+
5489
+
5490
+
5491
+
5492
+
5493
+
5494
+
5495
+
5496
+
5497
+
5498
+
5499
+
5500
+ been
5501
+
5502
+
5503
+ sc@@
5504
+
5505
+
5506
+
5507
+ ants
5508
+
5509
+
5510
+
5511
+ one
5512
+
5513
+
5514
+ land
5515
+
5516
+
5517
+
5518
+ wi@@
5519
+
5520
+
5521
+
5522
+
5523
+
5524
+
5525
+
5526
+
5527
+
5528
+
5529
+
5530
+ dent
5531
+
5532
+
5533
+
5534
+
5535
+ oun@@
5536
+
5537
+
5538
+
5539
+
5540
+
5541
+
5542
+
5543
+ uring
5544
+
5545
+
5546
+
5547
+
5548
+
5549
+ stre@@
5550
+
5551
+
5552
+
5553
+
5554
+
5555
+ side
5556
+
5557
+
5558
+
5559
+
5560
+
5561
+
5562
+
5563
+ pu@@
5564
+ right
5565
+
5566
+
5567
+ mber
5568
+
5569
+ town
5570
+
5571
+
5572
+
5573
+ loc@@
5574
+ spa
5575
+
5576
+
5577
+
5578
+
5579
+
5580
+
5581
+
5582
+
5583
+
5584
+
5585
+
5586
+
5587
+
5588
+
5589
+
5590
+
5591
+ some
5592
+
5593
+
5594
+
5595
+ ice
5596
+
5597
+ ad@@
5598
+
5599
+
5600
+
5601
+
5602
+
5603
+ ard
5604
+
5605
+
5606
+
5607
+
5608
+
5609
+ always
5610
+
5611
+
5612
+
5613
+ ded
5614
+
5615
+
5616
+
5617
+
5618
+
5619
+
5620
+
5621
+
5622
+
5623
+ lar
5624
+
5625
+
5626
+ p
5627
+
5628
+ ga@@
5629
+ ey
5630
+ ho@@
5631
+
5632
+
5633
+
5634
+
5635
+
5636
+
5637
+ lit@@
5638
+
5639
+
5640
+
5641
+
5642
+
5643
+ ying
5644
+
5645
+
5646
+
5647
+
5648
+
5649
+
5650
+ ons
5651
+
5652
+
5653
+
5654
+
5655
+ 6
5656
+
5657
+
5658
+
5659
+
5660
+
5661
+ din@@
5662
+
5663
+
5664
+
5665
+
5666
+
5667
+
5668
+
5669
+
5670
+
5671
+
5672
+
5673
+
5674
+
5675
+ an@@
5676
+
5677
+ loca@@
5678
+
5679
+
5680
+ 2
5681
+ amer@@
5682
+
5683
+
5684
+ bra@@
5685
+
5686
+ str@@
5687
+ res@@
5688
+
5689
+
5690
+ pen@@
5691
+
5692
+
5693
+ ality
5694
+
5695
+
5696
+
5697
+
5698
+
5699
+
5700
+
5701
+
5702
+
5703
+
5704
+
5705
+ min@@
5706
+
5707
+
5708
+ tions
5709
+
5710
+
5711
+
5712
+
5713
+
5714
+ er
5715
+
5716
+
5717
+ business
5718
+
5719
+
5720
+
5721
+
5722
+
5723
+
5724
+
5725
+
5726
+ break@@
5727
+
5728
+
5729
+ sor@@
5730
+
5731
+
5732
+
5733
+ ation
5734
+
5735
+
5736
+
5737
+
5738
+
5739
+
5740
+
5741
+
5742
+ us
5743
+
5744
+
5745
+
5746
+
5747
+
5748
+ dr@@
5749
+
5750
+
5751
+
5752
+
5753
+
5754
+
5755
+
5756
+
5757
+
5758
+
5759
+
5760
+
5761
+
5762
+
5763
+
5764
+
5765
+
5766
+
5767
+
5768
+
5769
+
5770
+
5771
+ ff
5772
+
5773
+
5774
+
5775
+
5776
+
5777
+
5778
+
5779
+
5780
+
5781
+
5782
+
5783
+
5784
+
5785
+
5786
+ big
5787
+
5788
+
5789
+
5790
+
5791
+
5792
+ cle@@
5793
+
5794
+
5795
+
5796
+ hel@@
5797
+
5798
+
5799
+
5800
+
5801
+ hi@@
5802
+
5803
+
5804
+
5805
+
5806
+
5807
+
5808
+
5809
+
5810
+
5811
+
5812
+
5813
+
5814
+
5815
+
5816
+
5817
+
5818
+
5819
+
5820
+ resta@@
5821
+
5822
+
5823
+
5824
+
5825
+
5826
+
5827
+
5828
+
5829
+
5830
+
5831
+ of@@
5832
+
5833
+
5834
+
5835
+
5836
+
5837
+
5838
+
5839
+
5840
+
5841
+
5842
+
5843
+ ack
5844
+
5845
+
5846
+
5847
+ 寿
5848
+
5849
+ pro@@
5850
+
5851
+ mor@@
5852
+
5853
+
5854
+ ready
5855
+
5856
+
5857
+
5858
+
5859
+
5860
+
5861
+
5862
+
5863
+
5864
+
5865
+
5866
+
5867
+
5868
+
5869
+
5870
+
5871
+
5872
+
5873
+
5874
+
5875
+
5876
+
5877
+
5878
+
5879
+
5880
+
5881
+ each
5882
+ vil@@
5883
+
5884
+
5885
+
5886
+
5887
+
5888
+
5889
+
5890
+
5891
+
5892
+
5893
+
5894
+
5895
+ got
5896
+
5897
+
5898
+
5899
+
5900
+
5901
+
5902
+ ar@@
5903
+
5904
+
5905
+
5906
+
5907
+
5908
+
5909
+
5910
+
5911
+
5912
+
5913
+
5914
+
5915
+
5916
+
5917
+
5918
+
5919
+ hope
5920
+
5921
+
5922
+
5923
+
5924
+
5925
+
5926
+
5927
+
5928
+
5929
+
5930
+
5931
+
5932
+
5933
+
5934
+
5935
+
5936
+ ct
5937
+
5938
+
5939
+ wh@@
5940
+
5941
+
5942
+
5943
+
5944
+
5945
+ kes
5946
+
5947
+
5948
+ work
5949
+
5950
+
5951
+
5952
+
5953
+
5954
+
5955
+ ere
5956
+
5957
+
5958
+
5959
+
5960
+
5961
+
5962
+
5963
+ rooms
5964
+ ���
5965
+
5966
+ e
5967
+
5968
+
5969
+
5970
+
5971
+
5972
+
5973
+
5974
+ ia
5975
+ hundred
5976
+
5977
+
5978
+ no@@
5979
+ 西
5980
+
5981
+
5982
+
5983
+
5984
+ yes
5985
+
5986
+ sig@@
5987
+ gs
5988
+
5989
+
5990
+
5991
+ bur@@
5992
+
5993
+
5994
+
5995
+
5996
+ dy
5997
+
5998
+
5999
+
6000
+
6001
+
6002
+
6003
+
6004
+
6005
+
6006
+
6007
+ or
6008
+
6009
+
6010
+
6011
+
6012
+
6013
+
6014
+
6015
+
6016
+ you
6017
+
6018
+ als
6019
+
6020
+
6021
+
6022
+
6023
+
6024
+
6025
+
6026
+
6027
+ ba@@
6028
+
6029
+
6030
+
6031
+
6032
+
6033
+
6034
+
6035
+
6036
+
6037
+
6038
+
6039
+
6040
+
6041
+
6042
+
6043
+ cal@@
6044
+
6045
+ enty
6046
+
6047
+ 洿
6048
+
6049
+
6050
+
6051
+
6052
+
6053
+ nineteen
6054
+ cause
6055
+
6056
+
6057
+
6058
+
6059
+
6060
+
6061
+
6062
+
6063
+
6064
+
6065
+
6066
+
6067
+
6068
+
6069
+
6070
+
6071
+
6072
+ 5@@
6073
+
6074
+ to
6075
+
6076
+
6077
+
6078
+
6079
+
6080
+
6081
+
6082
+
6083
+
6084
+
6085
+ ber@@
6086
+ 1
6087
+
6088
+
6089
+
6090
+ r@@
6091
+ squ@@
6092
+
6093
+
6094
+
6095
+
6096
+
6097
+
6098
+
6099
+
6100
+ as
6101
+
6102
+
6103
+
6104
+
6105
+
6106
+
6107
+
6108
+
6109
+
6110
+
6111
+
6112
+
6113
+
6114
+
6115
+
6116
+
6117
+
6118
+ ass
6119
+
6120
+ tive
6121
+ never
6122
+
6123
+ ence
6124
+
6125
+
6126
+
6127
+
6128
+
6129
+
6130
+
6131
+
6132
+
6133
+
6134
+
6135
+
6136
+
6137
+
6138
+
6139
+
6140
+
6141
+
6142
+ st
6143
+
6144
+
6145
+
6146
+
6147
+
6148
+
6149
+
6150
+
6151
+
6152
+
6153
+
6154
+
6155
+
6156
+
6157
+ soci@@
6158
+
6159
+ home
6160
+
6161
+
6162
+
6163
+
6164
+
6165
+
6166
+ ters
6167
+ ted
6168
+
6169
+
6170
+ eas@@
6171
+ ven@@
6172
+
6173
+ ac@@
6174
+
6175
+ fas@@
6176
+
6177
+
6178
+
6179
+
6180
+ lan@@
6181
+
6182
+
6183
+ secon@@
6184
+
6185
+
6186
+
6187
+
6188
+ out
6189
+
6190
+
6191
+
6192
+
6193
+
6194
+
6195
+
6196
+
6197
+ did
6198
+ date
6199
+
6200
+
6201
+
6202
+
6203
+
6204
+
6205
+
6206
+
6207
+
6208
+
6209
+ produ@@
6210
+
6211
+ free
6212
+
6213
+
6214
+
6215
+
6216
+
6217
+
6218
+
6219
+
6220
+
6221
+
6222
+
6223
+
6224
+
6225
+
6226
+
6227
+
6228
+
6229
+
6230
+
6231
+
6232
+
6233
+
6234
+
6235
+
6236
+
6237
+
6238
+ d
6239
+
6240
+
6241
+
6242
+ de@@
6243
+ inc@@
6244
+
6245
+
6246
+
6247
+
6248
+
6249
+ pi@@
6250
+
6251
+
6252
+
6253
+
6254
+ ke
6255
+
6256
+
6257
+
6258
+
6259
+
6260
+ 线
6261
+
6262
+
6263
+
6264
+
6265
+
6266
+
6267
+ days
6268
+
6269
+
6270
+
6271
+
6272
+
6273
+
6274
+
6275
+
6276
+ belie@@
6277
+
6278
+
6279
+
6280
+
6281
+
6282
+
6283
+
6284
+
6285
+
6286
+
6287
+
6288
+
6289
+
6290
+
6291
+ ph@@
6292
+ ef@@
6293
+
6294
+
6295
+
6296
+
6297
+
6298
+
6299
+
6300
+ though
6301
+
6302
+ av@@
6303
+
6304
+
6305
+ road
6306
+ wn
6307
+
6308
+
6309
+
6310
+
6311
+ end
6312
+
6313
+
6314
+ 8
6315
+
6316
+
6317
+ ties
6318
+
6319
+
6320
+
6321
+
6322
+
6323
+
6324
+
6325
+
6326
+ wor@@
6327
+
6328
+
6329
+
6330
+
6331
+
6332
+
6333
+
6334
+ bus
6335
+ ten@@
6336
+ check
6337
+
6338
+
6339
+
6340
+
6341
+
6342
+
6343
+
6344
+
6345
+
6346
+
6347
+
6348
+
6349
+
6350
+
6351
+
6352
+
6353
+
6354
+
6355
+
6356
+
6357
+
6358
+
6359
+
6360
+ gi@@
6361
+
6362
+
6363
+
6364
+
6365
+
6366
+
6367
+
6368
+ ple@@
6369
+
6370
+
6371
+
6372
+
6373
+
6374
+
6375
+
6376
+
6377
+
6378
+
6379
+
6380
+
6381
+
6382
+
6383
+
6384
+
6385
+
6386
+
6387
+
6388
+ 鱿
6389
+
6390
+ me
6391
+
6392
+ sing
6393
+
6394
+
6395
+
6396
+
6397
+
6398
+
6399
+
6400
+
6401
+
6402
+ d@@
6403
+
6404
+ world
6405
+
6406
+
6407
+
6408
+
6409
+
6410
+
6411
+
6412
+
6413
+
6414
+
6415
+
6416
+
6417
+
6418
+
6419
+
6420
+
6421
+
6422
+
6423
+
6424
+
6425
+
6426
+
6427
+
6428
+
6429
+
6430
+
6431
+
6432
+
6433
+
6434
+
6435
+
6436
+
6437
+
6438
+
6439
+ going
6440
+
6441
+ your
6442
+ ever@@
6443
+
6444
+
6445
+
6446
+
6447
+
6448
+
6449
+ vern@@
6450
+ z@@
6451
+
6452
+
6453
+
6454
+
6455
+
6456
+
6457
+
6458
+
6459
+
6460
+
6461
+ 3@@
6462
+ tho@@
6463
+
6464
+
6465
+
6466
+
6467
+
6468
+
6469
+ ko@@
6470
+ ge@@
6471
+
6472
+
6473
+
6474
+
6475
+
6476
+
6477
+
6478
+
6479
+
6480
+ gue@@
6481
+
6482
+
6483
+
6484
+ ily
6485
+
6486
+
6487
+
6488
+
6489
+
6490
+ ours
6491
+
6492
+
6493
+
6494
+
6495
+
6496
+
6497
+ make
6498
+
6499
+
6500
+
6501
+
6502
+
6503
+
6504
+
6505
+
6506
+
6507
+
6508
+
6509
+
6510
+
6511
+
6512
+
6513
+
6514
+ order
6515
+
6516
+
6517
+ val@@
6518
+
6519
+
6520
+
6521
+
6522
+ go
6523
+
6524
+
6525
+
6526
+
6527
+
6528
+
6529
+
6530
+
6531
+
6532
+
6533
+
6534
+
6535
+
6536
+ age
6537
+
6538
+
6539
+
6540
+
6541
+
6542
+ am@@
6543
+
6544
+
6545
+ cess
6546
+
6547
+ he
6548
+
6549
+
6550
+
6551
+
6552
+
6553
+
6554
+ sel@@
6555
+
6556
+
6557
+
6558
+ help
6559
+
6560
+
6561
+
6562
+
6563
+
6564
+
6565
+
6566
+ ort
6567
+
6568
+
6569
+
6570
+
6571
+
6572
+
6573
+
6574
+
6575
+
6576
+ product
6577
+
6578
+
6579
+
6580
+
6581
+
6582
+
6583
+
6584
+
6585
+
6586
+ pa@@
6587
+
6588
+
6589
+
6590
+
6591
+
6592
+
6593
+
6594
+
6595
+
6596
+ part
6597
+ found
6598
+
6599
+
6600
+
6601
+
6602
+
6603
+
6604
+
6605
+
6606
+
6607
+
6608
+ wha@@
6609
+
6610
+ ks
6611
+
6612
+
6613
+
6614
+
6615
+ ste@@
6616
+
6617
+
6618
+
6619
+ tain
6620
+ street
6621
+
6622
+
6623
+
6624
+
6625
+ on@@
6626
+
6627
+
6628
+
6629
+
6630
+
6631
+
6632
+
6633
+
6634
+
6635
+ mail
6636
+
6637
+
6638
+
6639
+
6640
+
6641
+ fo@@
6642
+
6643
+
6644
+ la
6645
+
6646
+
6647
+
6648
+ can't
6649
+
6650
+
6651
+
6652
+
6653
+
6654
+
6655
+
6656
+
6657
+ tre@@
6658
+
6659
+
6660
+
6661
+
6662
+ point
6663
+
6664
+
6665
+
6666
+
6667
+
6668
+
6669
+
6670
+
6671
+
6672
+
6673
+
6674
+
6675
+
6676
+
6677
+
6678
+
6679
+
6680
+
6681
+
6682
+
6683
+
6684
+
6685
+
6686
+
6687
+
6688
+
6689
+
6690
+
6691
+
6692
+
6693
+
6694
+
6695
+
6696
+ y@@
6697
+
6698
+
6699
+
6700
+
6701
+
6702
+
6703
+
6704
+
6705
+
6706
+
6707
+ ort@@
6708
+
6709
+
6710
+ o
6711
+
6712
+
6713
+
6714
+
6715
+
6716
+
6717
+
6718
+
6719
+
6720
+ m@@
6721
+
6722
+
6723
+
6724
+ would
6725
+
6726
+
6727
+
6728
+
6729
+ ls
6730
+
6731
+
6732
+
6733
+
6734
+ ques@@
6735
+
6736
+
6737
+
6738
+
6739
+
6740
+
6741
+
6742
+
6743
+
6744
+
6745
+
6746
+
6747
+
6748
+
6749
+
6750
+
6751
+ thing
6752
+ q@@
6753
+ fre@@
6754
+
6755
+ beach
6756
+
6757
+
6758
+
6759
+
6760
+
6761
+
6762
+
6763
+
6764
+
6765
+ '@@
6766
+
6767
+
6768
+
6769
+
6770
+ mar@@
6771
+
6772
+ made
6773
+
6774
+
6775
+
6776
+
6777
+
6778
+
6779
+
6780
+
6781
+
6782
+ little
6783
+
6784
+
6785
+
6786
+
6787
+
6788
+
6789
+
6790
+
6791
+
6792
+
6793
+
6794
+ o@@
6795
+
6796
+
6797
+
6798
+
6799
+
6800
+
6801
+
6802
+
6803
+
6804
+
6805
+
6806
+
6807
+
6808
+
6809
+ tal
6810
+
6811
+
6812
+
6813
+
6814
+
6815
+
6816
+
6817
+
6818
+
6819
+
6820
+
6821
+
6822
+
6823
+
6824
+
6825
+
6826
+
6827
+
6828
+
6829
+
6830
+
6831
+
6832
+
6833
+
6834
+
6835
+
6836
+
6837
+
6838
+
6839
+ sequence
6840
+
6841
+ ure
6842
+
6843
+ thous@@
6844
+
6845
+
6846
+
6847
+
6848
+ ten
6849
+
6850
+
6851
+
6852
+
6853
+
6854
+
6855
+
6856
+
6857
+
6858
+
6859
+
6860
+
6861
+
6862
+
6863
+
6864
+
6865
+ des
6866
+ 1@@
6867
+
6868
+
6869
+
6870
+ ving
6871
+
6872
+ ly
6873
+
6874
+
6875
+
6876
+
6877
+
6878
+
6879
+
6880
+ nor@@
6881
+
6882
+
6883
+
6884
+ coun@@
6885
+
6886
+ 宿
6887
+
6888
+
6889
+
6890
+
6891
+ enjo@@
6892
+
6893
+
6894
+
6895
+
6896
+
6897
+
6898
+
6899
+
6900
+ mple
6901
+
6902
+
6903
+
6904
+ when
6905
+
6906
+
6907
+
6908
+
6909
+
6910
+
6911
+
6912
+
6913
+
6914
+ 羿
6915
+
6916
+
6917
+ 廿
6918
+ sur@@
6919
+
6920
+
6921
+ 湿
6922
+
6923
+
6924
+
6925
+ school
6926
+
6927
+
6928
+
6929
+
6930
+ self
6931
+
6932
+
6933
+
6934
+
6935
+
6936
+ thousand
6937
+
6938
+
6939
+ lie@@
6940
+ 沿
6941
+
6942
+
6943
+
6944
+
6945
+
6946
+
6947
+ loo@@
6948
+
6949
+
6950
+
6951
+
6952
+
6953
+
6954
+
6955
+
6956
+ ���
6957
+
6958
+
6959
+
6960
+ u
6961
+
6962
+
6963
+ ur@@
6964
+
6965
+
6966
+ number
6967
+
6968
+ place
6969
+
6970
+
6971
+ ver@@
6972
+
6973
+
6974
+
6975
+
6976
+
6977
+
6978
+
6979
+
6980
+
6981
+
6982
+
6983
+
6984
+
6985
+
6986
+
6987
+
6988
+
6989
+ very
6990
+
6991
+
6992
+
6993
+
6994
+ t's
6995
+
6996
+ do
6997
+
6998
+
6999
+
7000
+ feel
7001
+
7002
+
7003
+ der
7004
+
7005
+ gen@@
7006
+
7007
+
7008
+
7009
+
7010
+
7011
+
7012
+
7013
+
7014
+
7015
+
7016
+
7017
+
7018
+
7019
+
7020
+
7021
+ kno@@
7022
+
7023
+
7024
+
7025
+
7026
+
7027
+ ch
7028
+
7029
+
7030
+
7031
+
7032
+
7033
+
7034
+ ames
7035
+ wel@@
7036
+
7037
+
7038
+ tra@@
7039
+
7040
+
7041
+
7042
+
7043
+
7044
+
7045
+
7046
+
7047
+
7048
+
7049
+
7050
+
7051
+
7052
+
7053
+
7054
+
7055
+
7056
+
7057
+
7058
+
7059
+
7060
+
7061
+
7062
+ ity
7063
+
7064
+
7065
+
7066
+
7067
+
7068
+
7069
+
7070
+
7071
+
7072
+
7073
+ looking
7074
+
7075
+
7076
+
7077
+
7078
+ chi@@
7079
+
7080
+
7081
+ about
7082
+
7083
+ es@@
7084
+
7085
+
7086
+
7087
+
7088
+
7089
+
7090
+
7091
+ und@@
7092
+
7093
+
7094
+
7095
+
7096
+
7097
+
7098
+
7099
+
7100
+
7101
+ they
7102
+
7103
+
7104
+
7105
+
7106
+
7107
+
7108
+ door
7109
+
7110
+
7111
+
7112
+
7113
+
7114
+ 饿
7115
+
7116
+ ry
7117
+
7118
+
7119
+
7120
+
7121
+ ye@@
7122
+ those
7123
+
7124
+
7125
+
7126
+ city
7127
+
7128
+
7129
+ better
7130
+
7131
+
7132
+
7133
+
7134
+
7135
+
7136
+
7137
+
7138
+ you@@
7139
+
7140
+
7141
+
7142
+
7143
+
7144
+
7145
+
7146
+
7147
+
7148
+
7149
+
7150
+
7151
+
7152
+
7153
+
7154
+
7155
+ ki@@
7156
+ tle
7157
+
7158
+
7159
+ years
7160
+
7161
+
7162
+
7163
+ re
7164
+
7165
+ tur@@
7166
+ deci@@
7167
+
7168
+
7169
+ bl@@
7170
+ of
7171
+
7172
+
7173
+
7174
+
7175
+
7176
+
7177
+
7178
+
7179
+
7180
+
7181
+
7182
+ six@@
7183
+
7184
+ cust@@
7185
+
7186
+
7187
+
7188
+
7189
+
7190
+ other
7191
+
7192
+
7193
+
7194
+
7195
+
7196
+
7197
+ lu@@
7198
+
7199
+
7200
+
7201
+
7202
+
7203
+
7204
+
7205
+
7206
+
7207
+
7208
+
7209
+ off
7210
+
7211
+
7212
+
7213
+
7214
+
7215
+
7216
+
7217
+
7218
+
7219
+
7220
+
7221
+
7222
+
7223
+
7224
+
7225
+
7226
+
7227
+ 退
7228
+
7229
+
7230
+
7231
+ cur@@
7232
+
7233
+
7234
+
7235
+
7236
+
7237
+
7238
+
7239
+ app@@
7240
+
7241
+
7242
+
7243
+
7244
+
7245
+
7246
+
7247
+
7248
+
7249
+
7250
+
7251
+ table
7252
+ @
7253
+
7254
+
7255
+
7256
+
7257
+
7258
+
7259
+
7260
+
7261
+
7262
+ let
7263
+
7264
+
7265
+
7266
+ rou@@
7267
+
7268
+
7269
+
7270
+
7271
+
7272
+
7273
+
7274
+
7275
+
7276
+
7277
+
7278
+
7279
+ per@@
7280
+
7281
+
7282
+
7283
+
7284
+
7285
+
7286
+
7287
+
7288
+
7289
+
7290
+ low
7291
+
7292
+
7293
+ could
7294
+
7295
+
7296
+
7297
+
7298
+
7299
+ then
7300
+
7301
+
7302
+
7303
+
7304
+
7305
+
7306
+
7307
+
7308
+ might
7309
+
7310
+
7311
+
7312
+ ge
7313
+
7314
+
7315
+
7316
+
7317
+ pla@@
7318
+
7319
+
7320
+
7321
+
7322
+
7323
+ tic@@
7324
+
7325
+
7326
+
7327
+
7328
+
7329
+
7330
+
7331
+
7332
+
7333
+
7334
+
7335
+
7336
+
7337
+
7338
+
7339
+
7340
+
7341
+ nee@@
7342
+
7343
+
7344
+
7345
+
7346
+ change
7347
+ j
7348
+
7349
+
7350
+
7351
+
7352
+
7353
+
7354
+
7355
+
7356
+
7357
+
7358
+
7359
+
7360
+
7361
+
7362
+
7363
+
7364
+
7365
+
7366
+ some@@
7367
+
7368
+
7369
+
7370
+
7371
+
7372
+
7373
+
7374
+
7375
+
7376
+
7377
+
7378
+
7379
+
7380
+
7381
+
7382
+
7383
+
7384
+
7385
+
7386
+
7387
+
7388
+ ab@@
7389
+
7390
+
7391
+
7392
+
7393
+
7394
+
7395
+
7396
+
7397
+ restaur@@
7398
+
7399
+
7400
+
7401
+ his
7402
+
7403
+
7404
+
7405
+
7406
+
7407
+
7408
+
7409
+
7410
+ tru@@
7411
+
7412
+
7413
+
7414
+
7415
+
7416
+
7417
+
7418
+
7419
+
7420
+ sto@@
7421
+
7422
+ were
7423
+
7424
+
7425
+
7426
+
7427
+
7428
+
7429
+
7430
+
7431
+
7432
+
7433
+
7434
+
7435
+
7436
+
7437
+
7438
+
7439
+
7440
+
7441
+
7442
+ .
7443
+
7444
+
7445
+
7446
+
7447
+
7448
+
7449
+
7450
+
7451
+
7452
+
7453
+ re's
7454
+
7455
+
7456
+
7457
+ tr@@
7458
+
7459
+
7460
+
7461
+
7462
+
7463
+
7464
+
7465
+
7466
+
7467
+
7468
+
7469
+
7470
+
7471
+
7472
+
7473
+
7474
+
7475
+
7476
+
7477
+
7478
+
7479
+
7480
+ ic
7481
+
7482
+
7483
+
7484
+
7485
+
7486
+
7487
+
7488
+
7489
+
7490
+ dn't
7491
+
7492
+
7493
+
7494
+
7495
+
7496
+
7497
+
7498
+
7499
+
7500
+
7501
+
7502
+
7503
+
7504
+
7505
+
7506
+
7507
+
7508
+
7509
+
7510
+
7511
+
7512
+
7513
+
7514
+
7515
+
7516
+ off@@
7517
+
7518
+
7519
+
7520
+
7521
+
7522
+
7523
+
7524
+
7525
+
7526
+ that@@
7527
+
7528
+
7529
+
7530
+
7531
+ um
7532
+
7533
+
7534
+
7535
+
7536
+
7537
+
7538
+
7539
+
7540
+
7541
+
7542
+
7543
+
7544
+
7545
+
7546
+
7547
+
7548
+
7549
+
7550
+
7551
+
7552
+ five
7553
+
7554
+
7555
+ ver
7556
+
7557
+
7558
+
7559
+
7560
+
7561
+ ep
7562
+
7563
+
7564
+
7565
+
7566
+
7567
+
7568
+
7569
+ line
7570
+
7571
+
7572
+
7573
+
7574
+ le
7575
+
7576
+ 穿
7577
+
7578
+
7579
+
7580
+ feat@@
7581
+
7582
+
7583
+
7584
+
7585
+
7586
+
7587
+
7588
+
7589
+
7590
+
7591
+ ad
7592
+
7593
+
7594
+
7595
+
7596
+
7597
+
7598
+
7599
+ lea@@
7600
+
7601
+
7602
+
7603
+
7604
+
7605
+
7606
+
7607
+
7608
+
7609
+
7610
+
7611
+
7612
+
7613
+
7614
+
7615
+
7616
+
7617
+
7618
+
7619
+
7620
+
7621
+
7622
+
7623
+
7624
+
7625
+
7626
+
7627
+
7628
+
7629
+
7630
+
7631
+
7632
+
7633
+
7634
+
7635
+ stay
7636
+
7637
+
7638
+
7639
+
7640
+
7641
+
7642
+
7643
+
7644
+
7645
+
7646
+
7647
+ be@@
7648
+
7649
+
7650
+
7651
+
7652
+
7653
+
7654
+
7655
+
7656
+
7657
+
7658
+
7659
+
7660
+
7661
+
7662
+
7663
+
7664
+
7665
+
7666
+
7667
+
7668
+
7669
+ which
7670
+
7671
+
7672
+
7673
+
7674
+
7675
+
7676
+
7677
+
7678
+
7679
+
7680
+
7681
+
7682
+
7683
+
7684
+
7685
+
7686
+
7687
+
7688
+
7689
+
7690
+
7691
+
7692
+
7693
+
7694
+
7695
+ ting
7696
+
7697
+
7698
+
7699
+
7700
+
7701
+
7702
+
7703
+
7704
+ me@@
7705
+ set
7706
+
7707
+ h
7708
+
7709
+
7710
+
7711
+
7712
+
7713
+
7714
+
7715
+
7716
+
7717
+
7718
+
7719
+
7720
+
7721
+
7722
+ ex@@
7723
+
7724
+
7725
+
7726
+ ws
7727
+
7728
+
7729
+ ll@@
7730
+
7731
+
7732
+
7733
+
7734
+
7735
+
7736
+
7737
+
7738
+
7739
+
7740
+
7741
+
7742
+
7743
+
7744
+ who@@
7745
+
7746
+
7747
+
7748
+
7749
+
7750
+
7751
+ pol@@
7752
+
7753
+ s
7754
+
7755
+
7756
+
7757
+
7758
+
7759
+
7760
+
7761
+
7762
+ speci@@
7763
+ ha@@
7764
+
7765
+ 鹿
7766
+ ak@@
7767
+
7768
+ m
7769
+
7770
+
7771
+
7772
+
7773
+
7774
+
7775
+
7776
+
7777
+ and
7778
+
7779
+
7780
+
7781
+ tion
7782
+
7783
+
7784
+
7785
+
7786
+
7787
+
7788
+
7789
+
7790
+
7791
+
7792
+ gy
7793
+
7794
+
7795
+
7796
+ ti@@
7797
+
7798
+
7799
+
7800
+
7801
+
7802
+
7803
+
7804
+
7805
+
7806
+
7807
+
7808
+
7809
+ public
7810
+
7811
+
7812
+ six
7813
+
7814
+ being
7815
+
7816
+
7817
+ ical
7818
+
7819
+
7820
+
7821
+
7822
+
7823
+ la@@
7824
+
7825
+
7826
+
7827
+ cap@@
7828
+
7829
+
7830
+
7831
+
7832
+
7833
+
7834
+ fu@@
7835
+ b@@
7836
+
7837
+
7838
+
7839
+
7840
+
7841
+
7842
+ act
7843
+
7844
+
7845
+
7846
+
7847
+
7848
+
7849
+
7850
+
7851
+
7852
+
7853
+
7854
+
7855
+
7856
+
7857
+
7858
+
7859
+
7860
+
7861
+
7862
+ see@@
7863
+
7864
+
7865
+
7866
+
7867
+
7868
+
7869
+ au@@
7870
+
7871
+
7872
+
7873
+ don@@
7874
+
7875
+
7876
+ fir@@
7877
+
7878
+
7879
+
7880
+
7881
+
7882
+
7883
+
7884
+
7885
+ ca@@
7886
+
7887
+
7888
+
7889
+
7890
+
7891
+
7892
+
7893
+ ven
7894
+
7895
+
7896
+
7897
+
7898
+
7899
+
7900
+ uni@@
7901
+
7902
+
7903
+
7904
+
7905
+
7906
+
7907
+
7908
+
7909
+
7910
+
7911
+
7912
+
7913
+
7914
+ roo@@
7915
+
7916
+
7917
+
7918
+
7919
+
7920
+
7921
+ fin@@
7922
+
7923
+
7924
+
7925
+
7926
+
7927
+
7928
+
7929
+
7930
+
7931
+
7932
+
7933
+
7934
+ service
7935
+
7936
+
7937
+
7938
+
7939
+
7940
+
7941
+
7942
+ ne@@
7943
+
7944
+
7945
+
7946
+
7947
+
7948
+
7949
+
7950
+
7951
+
7952
+
7953
+ ��
7954
+
7955
+
7956
+
7957
+
7958
+
7959
+
7960
+
7961
+
7962
+
7963
+
7964
+
7965
+
7966
+ sp@@
7967
+
7968
+
7969
+
7970
+
7971
+
7972
+
7973
+
7974
+ tan
7975
+ ul@@
7976
+
7977
+
7978
+
7979
+
7980
+ must
7981
+
7982
+
7983
+
7984
+
7985
+ buy
7986
+
7987
+
7988
+
7989
+ house
7990
+
7991
+
7992
+
7993
+
7994
+
7995
+
7996
+
7997
+ rest
7998
+
7999
+
8000
+
8001
+
8002
+
8003
+
8004
+
8005
+
8006
+
8007
+
8008
+
8009
+ zer@@
8010
+
8011
+ air@@
8012
+
8013
+
8014
+
8015
+
8016
+
8017
+
8018
+
8019
+
8020
+
8021
+
8022
+ came
8023
+
8024
+
8025
+
8026
+
8027
+
8028
+
8029
+
8030
+ wer
8031
+
8032
+
8033
+
8034
+
8035
+
8036
+ ils
8037
+
8038
+
8039
+
8040
+
8041
+
8042
+
8043
+
8044
+
8045
+
8046
+
8047
+
8048
+ xt
8049
+
8050
+
8051
+
8052
+
8053
+
8054
+
8055
+
8056
+
8057
+
8058
+ cu@@
8059
+
8060
+
8061
+
8062
+
8063
+
8064
+
8065
+ ve@@
8066
+
8067
+
8068
+ ili@@
8069
+
8070
+
8071
+
8072
+
8073
+
8074
+
8075
+
8076
+
8077
+
8078
+
8079
+
8080
+
8081
+
8082
+
8083
+ 't
8084
+
8085
+
8086
+
8087
+
8088
+
8089
+ offer
8090
+
8091
+
8092
+
8093
+
8094
+
8095
+
8096
+
8097
+
8098
+
8099
+
8100
+
8101
+
8102
+
8103
+
8104
+
8105
+ pr@@
8106
+
8107
+
8108
+
8109
+
8110
+
8111
+
8112
+
8113
+
8114
+
8115
+
8116
+
8117
+
8118
+
8119
+
8120
+
8121
+
8122
+
8123
+
8124
+
8125
+
8126
+
8127
+
8128
+
8129
+
8130
+
8131
+
8132
+
8133
+
8134
+
8135
+
8136
+
8137
+
8138
+
8139
+
8140
+
8141
+
8142
+ cour@@
8143
+
8144
+
8145
+ 2@@
8146
+
8147
+
8148
+
8149
+ or@@
8150
+
8151
+
8152
+
8153
+ view
8154
+ possi@@
8155
+
8156
+
8157
+
8158
+
8159
+
8160
+
8161
+
8162
+
8163
+
8164
+
8165
+
8166
+
8167
+
8168
+
8169
+
8170
+
8171
+
8172
+
8173
+
8174
+
8175
+
8176
+
8177
+ ei@@
8178
+
8179
+
8180
+
8181
+
8182
+
8183
+ shipping
8184
+ ght
8185
+
8186
+
8187
+
8188
+
8189
+ 访
8190
+ four
8191
+
8192
+
8193
+
8194
+
8195
+
8196
+
8197
+
8198
+
8199
+
8200
+
8201
+
8202
+
8203
+
8204
+
8205
+
8206
+
8207
+
8208
+
8209
+
8210
+
8211
+
8212
+
8213
+
8214
+
8215
+
8216
+
8217
+
8218
+
8219
+
8220
+
8221
+
8222
+
8223
+
8224
+ less
8225
+
8226
+
8227
+ food
8228
+
8229
+
8230
+
8231
+
8232
+
8233
+
8234
+
8235
+
8236
+
8237
+
8238
+
8239
+
8240
+ 怀
8241
+
8242
+
8243
+
8244
+
8245
+
8246
+
8247
+
8248
+
8249
+
8250
+
8251
+
8252
+
8253
+
8254
+
8255
+
8256
+
8257
+
8258
+
8259
+
8260
+
8261
+ was
8262
+
8263
+
8264
+
8265
+
8266
+
8267
+
8268
+
8269
+ throu@@
8270
+
8271
+
8272
+
8273
+
8274
+
8275
+
8276
+ serv@@
8277
+
8278
+
8279
+
8280
+
8281
+
8282
+ want
8283
+
8284
+
8285
+ p@@
8286
+ en
8287
+
8288
+
8289
+
8290
+ life
8291
+
8292
+
8293
+
8294
+
8295
+
8296
+
8297
+
8298
+
8299
+ v
8300
+ dress
8301
+
8302
+
8303
+
8304
+
8305
+
8306
+
8307
+
8308
+
8309
+
8310
+
8311
+
8312
+
8313
+
8314
+
8315
+
8316
+
8317
+
8318
+
8319
+
8320
+
8321
+
8322
+
8323
+
8324
+
8325
+
8326
+
8327
+
8328
+
8329
+
8330
+
8331
+ il@@
8332
+
8333
+
8334
+
8335
+ mi@@
8336
+
8337
+
8338
+ yo@@
8339
+
8340
+
8341
+
8342
+
8343
+
8344
+
8345
+
8346
+
8347
+
8348
+
8349
+
8350
+
8351
+
8352
+
8353
+ ju@@
8354
+
8355
+
8356
+
8357
+
8358
+
8359
+
8360
+
8361
+
8362
+
8363
+
8364
+
8365
+
8366
+
8367
+
8368
+
8369
+
8370
+
8371
+
8372
+
8373
+
8374
+
8375
+
8376
+ so@@
8377
+
8378
+
8379
+ spon@@
8380
+
8381
+
8382
+
8383
+
8384
+
8385
+
8386
+
8387
+
8388
+
8389
+
8390
+
8391
+
8392
+
8393
+
8394
+ c@@
8395
+
8396
+
8397
+
8398
+
8399
+
8400
+
8401
+
8402
+
8403
+
8404
+ <unk>
paraformer/onnx/asr_offline/model_eb.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33cac32a21e8a68d201bca9438fb6b468ebb2ea06032c8ca867490d6f4806215
3
+ size 25618378
paraformer/onnx/asr_offline/model_quant_1.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca7f5a87b5e9657ba2a12cc0c964cfd936c1e4a83267c888c343d656a8c20eb7
3
+ size 80115494
paraformer/onnx/asr_offline/model_quant_2.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46975551121162e0b63dbf359b52545ca35f438d4a25bc9cb3ffc96dd02adb79
3
+ size 80115494
paraformer/onnx/asr_offline/model_quant_3.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9017d3792afb2954ae08bd404c998da3f8b8a7a5644dd6d458478a28e42224a
3
+ size 80115494
paraformer/onnx/asr_online/am.mvn ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <Nnet>
2
+ <Splice> 560 560
3
+ [ 0 ]
4
+ <AddShift> 560 560
5
+ <LearnRateCoef> 0 [ -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 -8.311879 -8.600912 -9.615928 -10.43595 -11.21292 -11.88333 -12.36243 -12.63706 -12.8818 -12.83066 -12.89103 -12.95666 -13.19763 -13.40598 -13.49113 -13.5546 -13.55639 -13.51915 -13.68284 -13.53289 -13.42107 -13.65519 -13.50713 -13.75251 -13.76715 -13.87408 -13.73109 -13.70412 -13.56073 -13.53488 -13.54895 -13.56228 -13.59408 -13.62047 -13.64198 -13.66109 -13.62669 -13.58297 -13.57387 -13.4739 -13.53063 -13.48348 -13.61047 -13.64716 -13.71546 -13.79184 -13.90614 -14.03098 -14.18205 -14.35881 -14.48419 -14.60172 -14.70591 -14.83362 -14.92122 -15.00622 -15.05122 -15.03119 -14.99028 -14.92302 -14.86927 -14.82691 -14.7972 -14.76909 -14.71356 -14.61277 -14.51696 -14.42252 -14.36405 -14.30451 -14.23161 -14.19851 -14.16633 -14.15649 -14.10504 -13.99518 -13.79562 -13.3996 -12.7767 -11.71208 ]
6
+ <Rescale> 560 560
7
+ <LearnRateCoef> 0 [ 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 0.155775 0.154484 0.1527379 0.1518718 0.1506028 0.1489256 0.147067 0.1447061 0.1436307 0.1443568 0.1451849 0.1455157 0.1452821 0.1445717 0.1439195 0.1435867 0.1436018 0.1438781 0.1442086 0.1448844 0.1454756 0.145663 0.146268 0.1467386 0.1472724 0.147664 0.1480913 0.1483739 0.1488841 0.1493636 0.1497088 0.1500379 0.1502916 0.1505389 0.1506787 0.1507102 0.1505992 0.1505445 0.1505938 0.1508133 0.1509569 0.1512396 0.1514625 0.1516195 0.1516156 0.1515561 0.1514966 0.1513976 0.1512612 0.151076 0.1510596 0.1510431 0.151077 0.1511168 0.1511917 0.151023 0.1508045 0.1505885 0.1503493 0.1502373 0.1501726 0.1500762 0.1500065 0.1499782 0.150057 0.1502658 0.150469 0.1505335 0.1505505 0.1505328 0.1504275 0.1502438 0.1499674 0.1497118 0.1494661 0.1493102 0.1493681 0.1495501 0.1499738 0.1509654 ]
8
+ </Nnet>
paraformer/onnx/asr_online/config.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:101d8f10e71b9de2c98a22e068bd2dad4ae2bd7c285db361fc996c98c7ae8410
3
+ size 53469
paraformer/onnx/asr_online/decoder_quant.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9855f60417e6eccddc4c7340d448fe99e95be689cba6e76c5330aa653d430aea
3
+ size 71643767
paraformer/onnx/asr_online/model_quant_1.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a15cdc9d42436ac72cdf52be65ff3299b8443cbf1a5eaa40cbdcf4f03378d230
3
+ size 82707985
paraformer/onnx/asr_online/model_quant_2.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2490029a9c333682360d5978e1d52f7cadf7567f3c11d498c6840d7a7a66cf77
3
+ size 82707986
paraformer/onnx/punc/config.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:852e06fcd0ce711dade95967296e4d6a93f3cc18d2dcb51dae29a1645c2b4936
3
+ size 5931151
paraformer/onnx/punc/model_quant_0.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb58fbf48499e06cde3bad2a1fc9d3e82e8816ec6f8b6e1e1b0cb2bed5df8873
3
+ size 103809024
paraformer/onnx/punc/model_quant_1.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5972ea9c5e9d331612646d2c0c7ea764f9cdf49362e0bea14c92216a0a7c1549
3
+ size 103809024
paraformer/onnx/punc/model_quant_2.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11438c023f51b1444dda4867043bb7ca99a616df9018aaf60dee9844c1e2b92e
3
+ size 103809024
paraformer/onnx/punc/model_quant_3.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed88bf01e7040ff4c5b4409e6d6d0585ad135cfb75600a719834ad01cdbddc71
3
+ size 103809024
paraformer/onnx/punc/model_quant_4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:906da38d7f91222ad6c4cdc8a1658477765287e3d1677af990cf751cc44d5175
3
+ size 103809024
paraformer/onnx/punc/model_quant_5.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ce5be3e619f526129df59d8ca79b3f41d38ee203b84c628a542889f987564c
3
+ size 103809024