Liusuthu commited on
Commit
b3ed186
·
verified ·
1 Parent(s): 188deb4

Update app_utils.py

Browse files
Files changed (1) hide show
  1. app_utils.py +13 -66
app_utils.py CHANGED
@@ -43,15 +43,15 @@ def text_api(text:str):
43
  )
44
  return result
45
 
46
- def get_text_score(text):
47
- string=text_api(text)
48
- part1 = str.partition(string, r"text")
49
- want1 = part1[2]
50
- label = want1[4:6]
51
- part2 = str.partition(string, r"probability")
52
- want2 = part2[2]
53
- prob = float(want2[3:-4])
54
- return label, prob
55
 
56
 
57
  def classify_continuous(audio):
@@ -88,64 +88,11 @@ def classify_continuous(audio):
88
 
89
 
90
 
91
- def preprocess_image_and_predict(inp):
92
- return None, None, None
93
-
94
- def preprocess_video_and_predict(video):
95
- return None, None, None, None
96
-
97
-
98
-
99
- def text_api(text:str):
100
- result = client.predict(
101
- text, # str in '输入文字' Textbox component
102
- api_name="/predict",
103
- )
104
- return result
105
-
106
-
107
- def get_text_score(text):
108
- string=text_api(text)
109
- part1 = str.partition(string, r"text")
110
- want1 = part1[2]
111
- label = want1[4:6]
112
- part2 = str.partition(string, r"probability")
113
- want2 = part2[2]
114
- prob = float(want2[3:-4])
115
- return label, prob
116
-
117
- def classify_continuous(audio):
118
- print(type(audio))
119
- print(audio)
120
- sample_rate, signal = audio # 这是语音的输入
121
- signal = signal.astype(np.float32)
122
- signal /= np.max(np.abs(signal))
123
- sf.write("data/a.wav", signal, sample_rate)
124
- signal, sample_rate = torchaudio.load("data/a.wav")
125
- signal1 = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(
126
- signal
127
- )
128
- torchaudio.save("data/out.wav", signal1, 16000, encoding="PCM_S", bits_per_sample=16)
129
- Audio = "data/out.wav"
130
- speech, sample_rate = AudioReader.read_wav_file(Audio)
131
- if signal == "none":
132
- return "none", "none", "haha"
133
- else:
134
- segments = vad.segments_offline(speech)
135
- text_results = ""
136
- for part in segments:
137
- _result = ASR_model.infer_offline(
138
- speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
139
- )
140
- text_results += punc.punctuate(_result)[0]
141
-
142
- out_prob, score, index, text_lab = classifier.classify_batch(signal1)
143
- print(type(out_prob.squeeze(0).numpy()))
144
- print(out_prob.squeeze(0).numpy())
145
- print(type(text_lab[-1]))
146
- print(text_lab[-1])
147
- return text_results, out_prob.squeeze(0).numpy(), text_lab[-1], Audio
148
 
 
 
149
 
150
  #######################################################################
151
  #规范函数,只管值输入输出:
 
43
  )
44
  return result
45
 
46
+ # def get_text_score(text):
47
+ # string=text_api(text)
48
+ # part1 = str.partition(string, r"text")
49
+ # want1 = part1[2]
50
+ # label = want1[4:6]
51
+ # part2 = str.partition(string, r"probability")
52
+ # want2 = part2[2]
53
+ # prob = float(want2[3:-4])
54
+ # return label, prob
55
 
56
 
57
  def classify_continuous(audio):
 
88
 
89
 
90
 
91
+ # def preprocess_image_and_predict(inp):
92
+ # return None, None, None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
+ # def preprocess_video_and_predict(video):
95
+ # return None, None, None, None
96
 
97
  #######################################################################
98
  #规范函数,只管值输入输出: