|
--- |
|
library_name: transformers |
|
base_model: tarekziade/wikipedia-summaries-t5-efficient-tiny |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: t5-efficient-tiny-nh8-summarizer |
|
results: [] |
|
datasets: |
|
- shorecode/summary-collection-60k-rows |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-efficient-tiny-summarizer-general-purpose |
|
|
|
This model is a fine-tuned version of [tarekziade/wikipedia-summaries-t5-efficient-tiny](https://huggingface.co./tarekziade/wikipedia-summaries-t5-efficient-tiny) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3.0000000000000004e-05 |
|
- train_batch_size: 63 |
|
- eval_batch_size: 63 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.0 | 0.2096 | 200 | nan | |
|
| 0.0 | 0.4193 | 400 | nan | |
|
| 0.0 | 0.6289 | 600 | nan | |
|
| 0.0 | 0.8386 | 800 | nan | |
|
| 0.0 | 1.0482 | 1000 | nan | |
|
| 0.0 | 1.2579 | 1200 | nan | |
|
| 0.0 | 1.4675 | 1400 | nan | |
|
| 0.0 | 1.6771 | 1600 | nan | |
|
| 0.0 | 1.8868 | 1800 | nan | |
|
| 0.0 | 2.0964 | 2000 | nan | |
|
| 0.0 | 2.3061 | 2200 | nan | |
|
| 0.0 | 2.5157 | 2400 | nan | |
|
| 0.0 | 2.7254 | 2600 | nan | |
|
| 0.0 | 2.9350 | 2800 | nan | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.21.0 |
|
|