File size: 2,273 Bytes
3ea3464
1d0b25a
 
3ea3464
7bf177e
 
 
 
ae3254f
 
3ea3464
 
7bf177e
 
 
25c5ab4
7bf177e
1d0b25a
 
 
7bf177e
 
 
77d476a
7bf177e
 
3ea3464
77d476a
3ea3464
7bf177e
3ea3464
77d476a
3ea3464
7bf177e
3ea3464
7bf177e
3ea3464
7bf177e
1d0b25a
9f7057c
 
7bf177e
 
 
 
 
3ea3464
1513fd3
 
1d0b25a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1513fd3
 
7bf177e
3ea3464
7bf177e
 
 
1d0b25a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
base_model: tarekziade/wikipedia-summaries-t5-efficient-tiny
tags:
- generated_from_trainer
model-index:
- name: t5-efficient-tiny-nh8-summarizer
  results: []
datasets:
- shorecode/summary-collection-60k-rows
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-efficient-tiny-summarizer-general-purpose

This model is a fine-tuned version of [tarekziade/wikipedia-summaries-t5-efficient-tiny](https://huggingface.co./tarekziade/wikipedia-summaries-t5-efficient-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3.0000000000000004e-05
- train_batch_size: 63
- eval_batch_size: 63
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0           | 0.2096 | 200  | nan             |
| 0.0           | 0.4193 | 400  | nan             |
| 0.0           | 0.6289 | 600  | nan             |
| 0.0           | 0.8386 | 800  | nan             |
| 0.0           | 1.0482 | 1000 | nan             |
| 0.0           | 1.2579 | 1200 | nan             |
| 0.0           | 1.4675 | 1400 | nan             |
| 0.0           | 1.6771 | 1600 | nan             |
| 0.0           | 1.8868 | 1800 | nan             |
| 0.0           | 2.0964 | 2000 | nan             |
| 0.0           | 2.3061 | 2200 | nan             |
| 0.0           | 2.5157 | 2400 | nan             |
| 0.0           | 2.7254 | 2600 | nan             |
| 0.0           | 2.9350 | 2800 | nan             |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.21.0