--- library_name: transformers base_model: tarekziade/wikipedia-summaries-t5-efficient-tiny tags: - generated_from_trainer model-index: - name: t5-efficient-tiny-nh8-summarizer results: [] datasets: - shorecode/summary-collection-60k-rows --- # t5-efficient-tiny-summarizer-general-purpose This model is a fine-tuned version of [tarekziade/wikipedia-summaries-t5-efficient-tiny](https://huggingface.co./tarekziade/wikipedia-summaries-t5-efficient-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.0000000000000004e-05 - train_batch_size: 63 - eval_batch_size: 63 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.2096 | 200 | nan | | 0.0 | 0.4193 | 400 | nan | | 0.0 | 0.6289 | 600 | nan | | 0.0 | 0.8386 | 800 | nan | | 0.0 | 1.0482 | 1000 | nan | | 0.0 | 1.2579 | 1200 | nan | | 0.0 | 1.4675 | 1400 | nan | | 0.0 | 1.6771 | 1600 | nan | | 0.0 | 1.8868 | 1800 | nan | | 0.0 | 2.0964 | 2000 | nan | | 0.0 | 2.3061 | 2200 | nan | | 0.0 | 2.5157 | 2400 | nan | | 0.0 | 2.7254 | 2600 | nan | | 0.0 | 2.9350 | 2800 | nan | ### Framework versions - Transformers 4.47.0 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.21.0