flant5_sum_samsum / README.md
sentientconch's picture
update model card README.md
35821b1
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
model-index:
- name: flant5_sum_samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flant5_sum_samsum
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co./google/flan-t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Gen Len: 16.6760
- Rouge Score: {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456}
- Bleu Score: {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569}
- Bleurt Score: -0.4863
- Bert Score: [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Gen Len | Rouge Score | Bleu Score | Bleurt Score | Bert Score |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:----------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------:|:------------------------------------------------------------:|
| 0.0 | 1.0 | 921 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
| 0.0 | 2.0 | 1842 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
| 0.0 | 3.0 | 2763 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
| 0.0 | 4.0 | 3684 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
| 0.0 | 5.0 | 4605 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
| 0.0 | 6.0 | 5526 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
| 0.0 | 7.0 | 6447 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
| 0.0 | 8.0 | 7368 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
| 0.0 | 9.0 | 8289 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
| 0.0 | 10.0 | 9210 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.10.0
- Tokenizers 0.13.3