sentientconch
commited on
Commit
•
35821b1
1
Parent(s):
e8a3184
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/flan-t5-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: flant5_sum_samsum
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# flant5_sum_samsum
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: nan
|
19 |
+
- Gen Len: 16.6760
|
20 |
+
- Rouge Score: {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456}
|
21 |
+
- Bleu Score: {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569}
|
22 |
+
- Bleurt Score: -0.4863
|
23 |
+
- Bert Score: [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0002
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 16
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 10
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Gen Len | Rouge Score | Bleu Score | Bleurt Score | Bert Score |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:----------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------:|:------------------------------------------------------------:|
|
54 |
+
| 0.0 | 1.0 | 921 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
|
55 |
+
| 0.0 | 2.0 | 1842 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
|
56 |
+
| 0.0 | 3.0 | 2763 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
|
57 |
+
| 0.0 | 4.0 | 3684 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
|
58 |
+
| 0.0 | 5.0 | 4605 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
|
59 |
+
| 0.0 | 6.0 | 5526 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
|
60 |
+
| 0.0 | 7.0 | 6447 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
|
61 |
+
| 0.0 | 8.0 | 7368 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
|
62 |
+
| 0.0 | 9.0 | 8289 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
|
63 |
+
| 0.0 | 10.0 | 9210 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.31.0
|
69 |
+
- Pytorch 2.0.1+cu118
|
70 |
+
- Datasets 2.10.0
|
71 |
+
- Tokenizers 0.13.3
|