--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer model-index: - name: flant5_sum_samsum results: [] --- # flant5_sum_samsum This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co./google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Gen Len: 16.6760 - Rouge Score: {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} - Bleu Score: {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} - Bleurt Score: -0.4863 - Bert Score: [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | Rouge Score | Bleu Score | Bleurt Score | Bert Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:----------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------:|:------------------------------------------------------------:| | 0.0 | 1.0 | 921 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] | | 0.0 | 2.0 | 1842 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] | | 0.0 | 3.0 | 2763 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] | | 0.0 | 4.0 | 3684 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] | | 0.0 | 5.0 | 4605 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] | | 0.0 | 6.0 | 5526 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] | | 0.0 | 7.0 | 6447 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] | | 0.0 | 8.0 | 7368 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] | | 0.0 | 9.0 | 8289 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] | | 0.0 | 10.0 | 9210 | nan | 16.6760 | {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} | {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} | -0.4863 | [0.9187235832214355, 0.9003126621246338, 0.9092234373092651] | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.10.0 - Tokenizers 0.13.3