metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
- lewtun/dog_food
metrics:
- accuracy
model-index:
- name: swin-tiny-finetuned-dogfood
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: lewtun/dog_food
type: lewtun/dog_food
args: lewtun--dog_food
metrics:
- name: Accuracy
type: accuracy
value: 0.988
- task:
type: image-classification
name: Image Classification
dataset:
name: lewtun/dog_food
type: lewtun/dog_food
config: lewtun--dog_food
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9826666666666667
verified: true
- name: Precision Macro
type: precision
value: 0.9820904286553143
verified: true
- name: Precision Micro
type: precision
value: 0.9826666666666667
verified: true
- name: Precision Weighted
type: precision
value: 0.9828416519866903
verified: true
- name: Recall Macro
type: recall
value: 0.9828453314981092
verified: true
- name: Recall Micro
type: recall
value: 0.9826666666666667
verified: true
- name: Recall Weighted
type: recall
value: 0.9826666666666667
verified: true
- name: F1 Macro
type: f1
value: 0.9824101123169301
verified: true
- name: F1 Micro
type: f1
value: 0.9826666666666667
verified: true
- name: F1 Weighted
type: f1
value: 0.9826983433609648
verified: true
- name: loss
type: loss
value: 0.2326570302248001
verified: true
- name: matthews_correlation
type: matthews_correlation
value: 0.974016655798285
verified: true
swin-tiny-finetuned-dogfood
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the lewtun/dog_food dataset. It achieves the following results on the evaluation set:
- Loss: 0.1959
- Accuracy: 0.988
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8198 | 1.0 | 16 | 0.1901 | 0.9822 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1