--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder - lewtun/dog_food metrics: - accuracy model-index: - name: swin-tiny-finetuned-dogfood results: - task: name: Image Classification type: image-classification dataset: name: lewtun/dog_food type: lewtun/dog_food args: lewtun--dog_food metrics: - name: Accuracy type: accuracy value: 0.988 - task: type: image-classification name: Image Classification dataset: name: lewtun/dog_food type: lewtun/dog_food config: lewtun--dog_food split: test metrics: - name: Accuracy type: accuracy value: 0.9826666666666667 verified: true - name: Precision Macro type: precision value: 0.9820904286553143 verified: true - name: Precision Micro type: precision value: 0.9826666666666667 verified: true - name: Precision Weighted type: precision value: 0.9828416519866903 verified: true - name: Recall Macro type: recall value: 0.9828453314981092 verified: true - name: Recall Micro type: recall value: 0.9826666666666667 verified: true - name: Recall Weighted type: recall value: 0.9826666666666667 verified: true - name: F1 Macro type: f1 value: 0.9824101123169301 verified: true - name: F1 Micro type: f1 value: 0.9826666666666667 verified: true - name: F1 Weighted type: f1 value: 0.9826983433609648 verified: true - name: loss type: loss value: 0.2326570302248001 verified: true - name: matthews_correlation type: matthews_correlation value: 0.974016655798285 verified: true --- # swin-tiny-finetuned-dogfood This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the lewtun/dog_food dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Accuracy: 0.988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8198 | 1.0 | 16 | 0.1901 | 0.9822 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1