I was initially pretty sceptical about Meta's Coconut paper [1] because the largest perf gains were reported on toy linguistic problems. However, these results on machine translation are pretty impressive!
* Iteratively sample CoTs from the model, using a mix of different search strategies. This gives you something like Stream of Search via prompting. * Verify correctness of each CoT using GPT-4o (needed because exact match doesn't work well in medicine where there are lots of aliases) * Use GPT-4o to reformat the concatenated CoTs into a single stream that includes smooth transitions like "hmm, wait" etc that one sees in o1 * Use the resulting data for SFT & RL * Use sparse rewards from GPT-4o to guide RL training. They find RL gives an average ~3 point boost across medical benchmarks and SFT on this data already gives a strong improvement.
Applying this strategy to other domains could be quite promising, provided the training data can be formulated with verifiable problems!