metadata
base_model: saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:500
- loss:SoftmaxLoss
widget:
- source_sentence: >-
Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de
SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a
implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30%
en master data.
sentences:
- >-
Data mining of Clinical Databases - CDSS 1.Data Science.Machine
Learning.Understand the Schema of publicly available EHR databases
(MIMIC-III). Recognise the International Classification of Diseases
(ICD) use. Extract and visualise descriptive statistics from clinical
databases. Understand and extract key clinical outcomes such as
mortality and stay of length
- >-
Natural Language Processing on Google Cloud.Data Science.Machine
Learning.Machine Learning, Natural Language Processing, Tensorflow
- >-
Auditing I: Conceptual Foundations of Auditing.Business.Business
Essentials.Accounting, Audit, Critical Thinking, Financial Analysis,
Regulations and Compliance, Risk Management, Financial Accounting,
General Accounting, Leadership and Management, Finance
- source_sentence: >-
Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de
SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a
implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30%
en master data.
sentences:
- >-
Generando modelos con Auto Machine Learning.Data Science.Machine
Learning.Desarrollar modelos utilizando herramientas de Auto Machine
Learning. Explorar los datos y hacer el tratamiento para su uso al
generar modelos
- >-
Professionalism in Allied Health.Personal Development.Personal
Development.Gain an understanding of the expectations of an allied
healthcare professional in the workplace. Develop and exercise emotional
intelligence, self-management, and interpersonal skills. Build and
improve internal and external communication skills with all exchanges.
Enhance the patient care experience with successful interactions and
patient satisfaction
- >-
Big Data, Genes, and Medicine.Health.Health Informatics.Big Data,
Bioinformatics, Data Analysis, Data Analysis Software, Statistical
Programming, Algorithms, Exploratory Data Analysis, Computer Programming
- source_sentence: >-
Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de
SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a
implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30%
en master data.
sentences:
- >-
Retail Marketing Strategy.Business.Marketing.Brand Management,
Leadership and Management, Marketing, Sales, Strategy, Strategy and
Operations, Retail Sales, Retail Store Operations, Data Analysis,
E-Commerce
- >-
Supporting Veteran Success in Higher Education.Personal
Development.Personal Development.Supporting Veteran Success in Higher
Education
- >-
Advanced AI Techniques for the Supply Chain.Data Science.Machine
Learning.Machine Learning, Natural Language Processing
- source_sentence: >-
Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de
SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a
implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30%
en master data.
sentences:
- >-
Fundamentals of Flight mechanics.Physical Science and
Engineering.Physics and Astronomy.How Mach number can impact stall
speed.. Why turboprops consume less than turbojets.. What exactly mean
indications given by flight instruments (i.e. anemometer, altimeter).
- >-
Learn English: Beginning Grammar.Language Learning.Learning
English.Writing, Communication
- >-
Product Management Certification.Business.Leadership and
Management.Apply key product management skills, tools, and techniques to
engage and manage key stakeholders and clients. Identify product
strategy development and implementation methods and best practices to
ensure the right product is produced. Describe product development and
analysis best practices to effectively manage change and ensure a
successful product launch. Test what you have learned in a series of
practical exercises allowing you to demonstrate real-word product
management
- source_sentence: >-
Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de
SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a
implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30%
en master data.
sentences:
- >-
Python, Bash and SQL Essentials for Data Engineering.Computer
Science.Software Development.Develop data engineering solutions with a
minimal and essential subset of the Python language and the Linux
environment. Design scripts to connect and query a SQL database using
Python. Use a scraping library in Python to read, identify and extract
data from websites
- >-
AI-Enhanced Content Creation:Elevate Copywriting with Humata.Data
Science.Machine Learning.Use prompts in Humata AI to get the information
needed to generate an ad copy from the source files. . Create engaging
ads and blog posts tailored to your audience with the help of Humata AI
prompts. . Create a compelling advertisement for various online
platforms using prompt engineering in Humata AI.
- >-
SQL for Data Science Capstone Project.Data Science.Data Analysis.Develop
a project proposal and select your data. Perform descriptive statistics
as part of your exploratory analysis. Develop metrics and perform
advanced techniques in SQL. Present your findings and make
recommendations
SentenceTransformer based on saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2")
# Run inference
sentences = [
'Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.',
'Python, Bash and SQL Essentials for Data Engineering.Computer Science.Software Development.Develop data engineering solutions with a minimal and essential subset of the Python language and the Linux environment. Design scripts to connect and query a SQL database using Python. Use a scraping library in Python to read, identify and extract data from websites ',
'AI-Enhanced Content Creation:Elevate Copywriting with Humata.Data Science.Machine Learning.Use prompts in Humata AI to get the information needed to generate an ad copy from the source files. . Create engaging ads and blog posts tailored to your audience with the help of Humata AI prompts. . Create a compelling advertisement for various online platforms using prompt engineering in Humata AI. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 500 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 77 tokens
- mean: 77.0 tokens
- max: 77 tokens
- min: 14 tokens
- mean: 64.05 tokens
- max: 128 tokens
- 0: ~17.00%
- 1: ~25.00%
- 2: ~58.00%
- Samples:
sentence1 sentence2 label Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
Introduction to Generative AI - 한국어.Information Technology.Cloud Computing.생성형 AI 정의. 생성형 AI의 작동 방식 설명. 생성형 AI 모델 유형 설명. 생성형 AI 애플리케이션 설명
0
Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
Mastering Excel Essentials to Enhance Business Value.Business.Business Essentials.Effectively input data and efficiently navigate large spreadsheets.. Employ various "hacks" and expertly apply (the most appropriate) built-in functions in Excel to increase productivity and streamline workflow.. Apply the "what-if" analysis tools in Excel to conduct break-even analysis, conduct sensitivity analysis and support decision-making.
1
Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
Exploring Piano Literature: The Piano Sonata.Arts and Humanities.Music and Art.Identify specific historical time periods in which the popularity of sonatas increases or decreases and the reasons behind these trends. . Identify sonata form. Recognize the most influential pieces in the sonata repertoire.
2
- Loss:
SoftmaxLoss
Training Hyperparameters
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}