saraleivam commited on
Commit
a73bbb4
1 Parent(s): d2dae2d

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:500
13
+ - loss:SoftmaxLoss
14
+ widget:
15
+ - source_sentence: Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
16
+ actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP
17
+ Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni
18
+ a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
19
+ sentences:
20
+ - Data mining of Clinical Databases - CDSS 1.Data Science.Machine Learning.Understand
21
+ the Schema of publicly available EHR databases (MIMIC-III). Recognise the International
22
+ Classification of Diseases (ICD) use. Extract and visualise descriptive statistics
23
+ from clinical databases. Understand and extract key clinical outcomes such as
24
+ mortality and stay of length
25
+ - Natural Language Processing on Google Cloud.Data Science.Machine Learning.Machine
26
+ Learning, Natural Language Processing, Tensorflow
27
+ - 'Auditing I: Conceptual Foundations of Auditing.Business.Business Essentials.Accounting,
28
+ Audit, Critical Thinking, Financial Analysis, Regulations and Compliance, Risk
29
+ Management, Financial Accounting, General Accounting, Leadership and Management,
30
+ Finance'
31
+ - source_sentence: Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
32
+ actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP
33
+ Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni
34
+ a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
35
+ sentences:
36
+ - Generando modelos con Auto Machine Learning.Data Science.Machine Learning.Desarrollar
37
+ modelos utilizando herramientas de Auto Machine Learning. Explorar los datos y
38
+ hacer el tratamiento para su uso al generar modelos
39
+ - Professionalism in Allied Health.Personal Development.Personal Development.Gain
40
+ an understanding of the expectations of an allied healthcare professional in the
41
+ workplace. Develop and exercise emotional intelligence, self-management, and interpersonal
42
+ skills. Build and improve internal and external communication skills with all
43
+ exchanges. Enhance the patient care experience with successful interactions and
44
+ patient satisfaction
45
+ - Big Data, Genes, and Medicine.Health.Health Informatics.Big Data, Bioinformatics,
46
+ Data Analysis, Data Analysis Software, Statistical Programming, Algorithms, Exploratory
47
+ Data Analysis, Computer Programming
48
+ - source_sentence: Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
49
+ actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP
50
+ Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni
51
+ a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
52
+ sentences:
53
+ - Retail Marketing Strategy.Business.Marketing.Brand Management, Leadership and
54
+ Management, Marketing, Sales, Strategy, Strategy and Operations, Retail Sales,
55
+ Retail Store Operations, Data Analysis, E-Commerce
56
+ - Supporting Veteran Success in Higher Education.Personal Development.Personal Development.Supporting
57
+ Veteran Success in Higher Education
58
+ - Advanced AI Techniques for the Supply Chain.Data Science.Machine Learning.Machine
59
+ Learning, Natural Language Processing
60
+ - source_sentence: Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
61
+ actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP
62
+ Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni
63
+ a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
64
+ sentences:
65
+ - Fundamentals of Flight mechanics.Physical Science and Engineering.Physics and
66
+ Astronomy.How Mach number can impact stall speed.. Why turboprops consume less
67
+ than turbojets.. What exactly mean indications given by flight instruments (i.e.
68
+ anemometer, altimeter).
69
+ - 'Learn English: Beginning Grammar.Language Learning.Learning English.Writing,
70
+ Communication'
71
+ - Product Management Certification.Business.Leadership and Management.Apply key
72
+ product management skills, tools, and techniques to engage and manage key stakeholders
73
+ and clients. Identify product strategy development and implementation methods
74
+ and best practices to ensure the right product is produced. Describe product development
75
+ and analysis best practices to effectively manage change and ensure a successful
76
+ product launch. Test what you have learned in a series of practical exercises
77
+ allowing you to demonstrate real-word product management
78
+ - source_sentence: Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
79
+ actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP
80
+ Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni
81
+ a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
82
+ sentences:
83
+ - 'Python, Bash and SQL Essentials for Data Engineering.Computer Science.Software
84
+ Development.Develop data engineering solutions with a minimal and essential subset
85
+ of the Python language and the Linux environment. Design scripts to connect and
86
+ query a SQL database using Python. Use a scraping library in Python to read, identify
87
+ and extract data from websites '
88
+ - 'AI-Enhanced Content Creation:Elevate Copywriting with Humata.Data Science.Machine
89
+ Learning.Use prompts in Humata AI to get the information needed to generate an
90
+ ad copy from the source files. . Create engaging ads and blog posts tailored
91
+ to your audience with the help of Humata AI prompts. . Create a compelling advertisement
92
+ for various online platforms using prompt engineering in Humata AI. '
93
+ - SQL for Data Science Capstone Project.Data Science.Data Analysis.Develop a project
94
+ proposal and select your data. Perform descriptive statistics as part of your
95
+ exploratory analysis. Develop metrics and perform advanced techniques in SQL.
96
+ Present your findings and make recommendations
97
+ ---
98
+
99
+ # SentenceTransformer based on saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2
100
+
101
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
102
+
103
+ ## Model Details
104
+
105
+ ### Model Description
106
+ - **Model Type:** Sentence Transformer
107
+ - **Base model:** [saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 0f16d34e08fc583b71c922dc18d3b14eba17983c -->
108
+ - **Maximum Sequence Length:** 128 tokens
109
+ - **Output Dimensionality:** 384 tokens
110
+ - **Similarity Function:** Cosine Similarity
111
+ <!-- - **Training Dataset:** Unknown -->
112
+ <!-- - **Language:** Unknown -->
113
+ <!-- - **License:** Unknown -->
114
+
115
+ ### Model Sources
116
+
117
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
118
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
119
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
120
+
121
+ ### Full Model Architecture
122
+
123
+ ```
124
+ SentenceTransformer(
125
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
126
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
127
+ )
128
+ ```
129
+
130
+ ## Usage
131
+
132
+ ### Direct Usage (Sentence Transformers)
133
+
134
+ First install the Sentence Transformers library:
135
+
136
+ ```bash
137
+ pip install -U sentence-transformers
138
+ ```
139
+
140
+ Then you can load this model and run inference.
141
+ ```python
142
+ from sentence_transformers import SentenceTransformer
143
+
144
+ # Download from the 🤗 Hub
145
+ model = SentenceTransformer("saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2")
146
+ # Run inference
147
+ sentences = [
148
+ 'Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.',
149
+ 'Python, Bash and SQL Essentials for Data Engineering.Computer Science.Software Development.Develop data engineering solutions with a minimal and essential subset of the Python language and the Linux environment. Design scripts to connect and query a SQL database using Python. Use a scraping library in Python to read, identify and extract data from websites ',
150
+ 'AI-Enhanced Content Creation:Elevate Copywriting with Humata.Data Science.Machine Learning.Use prompts in Humata AI to get the information needed to generate an ad copy from the source files. . Create engaging ads and blog posts tailored to your audience with the help of Humata AI prompts. . Create a compelling advertisement for various online platforms using prompt engineering in Humata AI. ',
151
+ ]
152
+ embeddings = model.encode(sentences)
153
+ print(embeddings.shape)
154
+ # [3, 384]
155
+
156
+ # Get the similarity scores for the embeddings
157
+ similarities = model.similarity(embeddings, embeddings)
158
+ print(similarities.shape)
159
+ # [3, 3]
160
+ ```
161
+
162
+ <!--
163
+ ### Direct Usage (Transformers)
164
+
165
+ <details><summary>Click to see the direct usage in Transformers</summary>
166
+
167
+ </details>
168
+ -->
169
+
170
+ <!--
171
+ ### Downstream Usage (Sentence Transformers)
172
+
173
+ You can finetune this model on your own dataset.
174
+
175
+ <details><summary>Click to expand</summary>
176
+
177
+ </details>
178
+ -->
179
+
180
+ <!--
181
+ ### Out-of-Scope Use
182
+
183
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
184
+ -->
185
+
186
+ <!--
187
+ ## Bias, Risks and Limitations
188
+
189
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
190
+ -->
191
+
192
+ <!--
193
+ ### Recommendations
194
+
195
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
196
+ -->
197
+
198
+ ## Training Details
199
+
200
+ ### Training Dataset
201
+
202
+ #### Unnamed Dataset
203
+
204
+
205
+ * Size: 500 training samples
206
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
207
+ * Approximate statistics based on the first 1000 samples:
208
+ | | sentence1 | sentence2 | label |
209
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
210
+ | type | string | string | int |
211
+ | details | <ul><li>min: 77 tokens</li><li>mean: 77.0 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 64.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~17.00%</li><li>1: ~25.00%</li><li>2: ~58.00%</li></ul> |
212
+ * Samples:
213
+ | sentence1 | sentence2 | label |
214
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
215
+ | <code>Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.</code> | <code>Introduction to Generative AI - 한국어.Information Technology.Cloud Computing.생성형 AI 정의. 생성형 AI의 작동 방식 설명. 생성형 AI 모델 유형 설명. 생성형 AI 애플리케이션 설명</code> | <code>0</code> |
216
+ | <code>Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.</code> | <code>Mastering Excel Essentials to Enhance Business Value.Business.Business Essentials.Effectively input data and efficiently navigate large spreadsheets.. Employ various "hacks" and expertly apply (the most appropriate) built-in functions in Excel to increase productivity and streamline workflow.. Apply the "what-if" analysis tools in Excel to conduct break-even analysis, conduct sensitivity analysis and support decision-making.</code> | <code>1</code> |
217
+ | <code>Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.</code> | <code>Exploring Piano Literature: The Piano Sonata.Arts and Humanities.Music and Art.Identify specific historical time periods in which the popularity of sonatas increases or decreases and the reasons behind these trends. . Identify sonata form. Recognize the most influential pieces in the sonata repertoire. </code> | <code>2</code> |
218
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
219
+
220
+ ### Training Hyperparameters
221
+
222
+ #### All Hyperparameters
223
+ <details><summary>Click to expand</summary>
224
+
225
+ - `overwrite_output_dir`: False
226
+ - `do_predict`: False
227
+ - `eval_strategy`: no
228
+ - `prediction_loss_only`: True
229
+ - `per_device_train_batch_size`: 8
230
+ - `per_device_eval_batch_size`: 8
231
+ - `per_gpu_train_batch_size`: None
232
+ - `per_gpu_eval_batch_size`: None
233
+ - `gradient_accumulation_steps`: 1
234
+ - `eval_accumulation_steps`: None
235
+ - `learning_rate`: 5e-05
236
+ - `weight_decay`: 0.0
237
+ - `adam_beta1`: 0.9
238
+ - `adam_beta2`: 0.999
239
+ - `adam_epsilon`: 1e-08
240
+ - `max_grad_norm`: 1.0
241
+ - `num_train_epochs`: 3.0
242
+ - `max_steps`: -1
243
+ - `lr_scheduler_type`: linear
244
+ - `lr_scheduler_kwargs`: {}
245
+ - `warmup_ratio`: 0.0
246
+ - `warmup_steps`: 0
247
+ - `log_level`: passive
248
+ - `log_level_replica`: warning
249
+ - `log_on_each_node`: True
250
+ - `logging_nan_inf_filter`: True
251
+ - `save_safetensors`: True
252
+ - `save_on_each_node`: False
253
+ - `save_only_model`: False
254
+ - `restore_callback_states_from_checkpoint`: False
255
+ - `no_cuda`: False
256
+ - `use_cpu`: False
257
+ - `use_mps_device`: False
258
+ - `seed`: 42
259
+ - `data_seed`: None
260
+ - `jit_mode_eval`: False
261
+ - `use_ipex`: False
262
+ - `bf16`: False
263
+ - `fp16`: False
264
+ - `fp16_opt_level`: O1
265
+ - `half_precision_backend`: auto
266
+ - `bf16_full_eval`: False
267
+ - `fp16_full_eval`: False
268
+ - `tf32`: None
269
+ - `local_rank`: 0
270
+ - `ddp_backend`: None
271
+ - `tpu_num_cores`: None
272
+ - `tpu_metrics_debug`: False
273
+ - `debug`: []
274
+ - `dataloader_drop_last`: False
275
+ - `dataloader_num_workers`: 0
276
+ - `dataloader_prefetch_factor`: None
277
+ - `past_index`: -1
278
+ - `disable_tqdm`: False
279
+ - `remove_unused_columns`: True
280
+ - `label_names`: None
281
+ - `load_best_model_at_end`: False
282
+ - `ignore_data_skip`: False
283
+ - `fsdp`: []
284
+ - `fsdp_min_num_params`: 0
285
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
286
+ - `fsdp_transformer_layer_cls_to_wrap`: None
287
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
288
+ - `deepspeed`: None
289
+ - `label_smoothing_factor`: 0.0
290
+ - `optim`: adamw_torch
291
+ - `optim_args`: None
292
+ - `adafactor`: False
293
+ - `group_by_length`: False
294
+ - `length_column_name`: length
295
+ - `ddp_find_unused_parameters`: None
296
+ - `ddp_bucket_cap_mb`: None
297
+ - `ddp_broadcast_buffers`: False
298
+ - `dataloader_pin_memory`: True
299
+ - `dataloader_persistent_workers`: False
300
+ - `skip_memory_metrics`: True
301
+ - `use_legacy_prediction_loop`: False
302
+ - `push_to_hub`: False
303
+ - `resume_from_checkpoint`: None
304
+ - `hub_model_id`: None
305
+ - `hub_strategy`: every_save
306
+ - `hub_private_repo`: False
307
+ - `hub_always_push`: False
308
+ - `gradient_checkpointing`: False
309
+ - `gradient_checkpointing_kwargs`: None
310
+ - `include_inputs_for_metrics`: False
311
+ - `eval_do_concat_batches`: True
312
+ - `fp16_backend`: auto
313
+ - `push_to_hub_model_id`: None
314
+ - `push_to_hub_organization`: None
315
+ - `mp_parameters`:
316
+ - `auto_find_batch_size`: False
317
+ - `full_determinism`: False
318
+ - `torchdynamo`: None
319
+ - `ray_scope`: last
320
+ - `ddp_timeout`: 1800
321
+ - `torch_compile`: False
322
+ - `torch_compile_backend`: None
323
+ - `torch_compile_mode`: None
324
+ - `dispatch_batches`: None
325
+ - `split_batches`: None
326
+ - `include_tokens_per_second`: False
327
+ - `include_num_input_tokens_seen`: False
328
+ - `neftune_noise_alpha`: None
329
+ - `optim_target_modules`: None
330
+ - `batch_eval_metrics`: False
331
+ - `batch_sampler`: batch_sampler
332
+ - `multi_dataset_batch_sampler`: proportional
333
+
334
+ </details>
335
+
336
+ ### Framework Versions
337
+ - Python: 3.10.12
338
+ - Sentence Transformers: 3.0.1
339
+ - Transformers: 4.41.2
340
+ - PyTorch: 2.3.1+cu121
341
+ - Accelerate: 0.31.0
342
+ - Datasets: 2.20.0
343
+ - Tokenizers: 0.19.1
344
+
345
+ ## Citation
346
+
347
+ ### BibTeX
348
+
349
+ #### Sentence Transformers and SoftmaxLoss
350
+ ```bibtex
351
+ @inproceedings{reimers-2019-sentence-bert,
352
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
353
+ author = "Reimers, Nils and Gurevych, Iryna",
354
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
355
+ month = "11",
356
+ year = "2019",
357
+ publisher = "Association for Computational Linguistics",
358
+ url = "https://arxiv.org/abs/1908.10084",
359
+ }
360
+ ```
361
+
362
+ <!--
363
+ ## Glossary
364
+
365
+ *Clearly define terms in order to be accessible across audiences.*
366
+ -->
367
+
368
+ <!--
369
+ ## Model Card Authors
370
+
371
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
372
+ -->
373
+
374
+ <!--
375
+ ## Model Card Contact
376
+
377
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
378
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5869581ff3810f2393f52047ad7e7a0ec2e64419bedb5e3411bd04f4f6ef8055
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260