SentenceTransformer based on saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2")
# Run inference
sentences = [
'Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.',
'Python, Bash and SQL Essentials for Data Engineering.Computer Science.Software Development.Develop data engineering solutions with a minimal and essential subset of the Python language and the Linux environment. Design scripts to connect and query a SQL database using Python. Use a scraping library in Python to read, identify and extract data from websites ',
'AI-Enhanced Content Creation:Elevate Copywriting with Humata.Data Science.Machine Learning.Use prompts in Humata AI to get the information needed to generate an ad copy from the source files. . Create engaging ads and blog posts tailored to your audience with the help of Humata AI prompts. . Create a compelling advertisement for various online platforms using prompt engineering in Humata AI. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 500 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 77 tokens
- mean: 77.0 tokens
- max: 77 tokens
- min: 14 tokens
- mean: 64.05 tokens
- max: 128 tokens
- 0: ~17.00%
- 1: ~25.00%
- 2: ~58.00%
- Samples:
sentence1 sentence2 label Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
Introduction to Generative AI - 한국어.Information Technology.Cloud Computing.생성형 AI 정의. 생성형 AI의 작동 방식 설명. 생성형 AI 모델 유형 설명. 생성형 AI 애플리케이션 설명
0
Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
Mastering Excel Essentials to Enhance Business Value.Business.Business Essentials.Effectively input data and efficiently navigate large spreadsheets.. Employ various "hacks" and expertly apply (the most appropriate) built-in functions in Excel to increase productivity and streamline workflow.. Apply the "what-if" analysis tools in Excel to conduct break-even analysis, conduct sensitivity analysis and support decision-making.
1
Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
Exploring Piano Literature: The Piano Sonata.Arts and Humanities.Music and Art.Identify specific historical time periods in which the popularity of sonatas increases or decreases and the reasons behind these trends. . Identify sonata form. Recognize the most influential pieces in the sonata repertoire.
2
- Loss:
SoftmaxLoss
Training Hyperparameters
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.