sabhashanki's picture
update model card README.md
0b0bd92
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-pt22k-ft22k-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.782608695652174

beit-base-patch16-224-pt22k-ft22k-finetuned-eurosat

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5698
  • Accuracy: 0.7826

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.57 1 0.8366 0.4348
No log 1.57 2 0.7708 0.5217
No log 2.57 3 0.7185 0.6522
No log 3.57 4 0.6747 0.6522
No log 4.57 5 0.6380 0.6522
No log 5.57 6 0.6098 0.6957
No log 6.57 7 0.5859 0.7391
No log 7.57 8 0.5698 0.7826
No log 8.57 9 0.5589 0.7826
1.0859 9.57 10 0.5534 0.7826

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2