File size: 2,414 Bytes
acfcaf1 0b0bd92 acfcaf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-pt22k-ft22k-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.782608695652174
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beit-base-patch16-224-pt22k-ft22k-finetuned-eurosat
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co./microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5698
- Accuracy: 0.7826
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.57 | 1 | 0.8366 | 0.4348 |
| No log | 1.57 | 2 | 0.7708 | 0.5217 |
| No log | 2.57 | 3 | 0.7185 | 0.6522 |
| No log | 3.57 | 4 | 0.6747 | 0.6522 |
| No log | 4.57 | 5 | 0.6380 | 0.6522 |
| No log | 5.57 | 6 | 0.6098 | 0.6957 |
| No log | 6.57 | 7 | 0.5859 | 0.7391 |
| No log | 7.57 | 8 | 0.5698 | 0.7826 |
| No log | 8.57 | 9 | 0.5589 | 0.7826 |
| 1.0859 | 9.57 | 10 | 0.5534 | 0.7826 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|