--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.782608695652174 --- # beit-base-patch16-224-pt22k-ft22k-finetuned-eurosat This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co./microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5698 - Accuracy: 0.7826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.57 | 1 | 0.8366 | 0.4348 | | No log | 1.57 | 2 | 0.7708 | 0.5217 | | No log | 2.57 | 3 | 0.7185 | 0.6522 | | No log | 3.57 | 4 | 0.6747 | 0.6522 | | No log | 4.57 | 5 | 0.6380 | 0.6522 | | No log | 5.57 | 6 | 0.6098 | 0.6957 | | No log | 6.57 | 7 | 0.5859 | 0.7391 | | No log | 7.57 | 8 | 0.5698 | 0.7826 | | No log | 8.57 | 9 | 0.5589 | 0.7826 | | 1.0859 | 9.57 | 10 | 0.5534 | 0.7826 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2