|
--- |
|
license: mit |
|
base_model: gogamza/kobart-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: kobart-base-v2-159-korean |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# kobart-base-v2-159-korean |
|
|
|
This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co./gogamza/kobart-base-v2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2628 |
|
- Rouge1: 0.3634 |
|
- Rouge2: 0.1451 |
|
- Rougel: 0.3566 |
|
- Rougelsum: 0.3563 |
|
- Gen Len: 20.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 0.2804 | 1.44 | 500 | 0.2805 | 0.3321 | 0.1273 | 0.3272 | 0.3276 | 19.9992 | |
|
| 0.2141 | 2.88 | 1000 | 0.2472 | 0.3577 | 0.1381 | 0.3526 | 0.3525 | 20.0 | |
|
| 0.1407 | 4.33 | 1500 | 0.2495 | 0.3615 | 0.1457 | 0.3543 | 0.3543 | 20.0 | |
|
| 0.1206 | 5.77 | 2000 | 0.2508 | 0.3592 | 0.1448 | 0.3533 | 0.3532 | 20.0 | |
|
| 0.0853 | 7.21 | 2500 | 0.2603 | 0.3623 | 0.147 | 0.3561 | 0.3562 | 20.0 | |
|
| 0.0777 | 8.65 | 3000 | 0.2628 | 0.3634 | 0.1451 | 0.3566 | 0.3563 | 20.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|