Edit model card

kobart-base-v2-159-korean

This model is a fine-tuned version of gogamza/kobart-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2628
  • Rouge1: 0.3634
  • Rouge2: 0.1451
  • Rougel: 0.3566
  • Rougelsum: 0.3563
  • Gen Len: 20.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.2804 1.44 500 0.2805 0.3321 0.1273 0.3272 0.3276 19.9992
0.2141 2.88 1000 0.2472 0.3577 0.1381 0.3526 0.3525 20.0
0.1407 4.33 1500 0.2495 0.3615 0.1457 0.3543 0.3543 20.0
0.1206 5.77 2000 0.2508 0.3592 0.1448 0.3533 0.3532 20.0
0.0853 7.21 2500 0.2603 0.3623 0.147 0.3561 0.3562 20.0
0.0777 8.65 3000 0.2628 0.3634 0.1451 0.3566 0.3563 20.0

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
0
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ryusangwon/kobart-base-v2-159-korean

Finetuned
(13)
this model