ryusangwon's picture
Model save
1404fb9 verified
|
raw
history blame
2.16 kB
metadata
license: mit
base_model: gogamza/kobart-base-v2
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: kobart-base-v2-159-korean
    results: []

kobart-base-v2-159-korean

This model is a fine-tuned version of gogamza/kobart-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2628
  • Rouge1: 0.3634
  • Rouge2: 0.1451
  • Rougel: 0.3566
  • Rougelsum: 0.3563
  • Gen Len: 20.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.2804 1.44 500 0.2805 0.3321 0.1273 0.3272 0.3276 19.9992
0.2141 2.88 1000 0.2472 0.3577 0.1381 0.3526 0.3525 20.0
0.1407 4.33 1500 0.2495 0.3615 0.1457 0.3543 0.3543 20.0
0.1206 5.77 2000 0.2508 0.3592 0.1448 0.3533 0.3532 20.0
0.0853 7.21 2500 0.2603 0.3623 0.147 0.3561 0.3562 20.0
0.0777 8.65 3000 0.2628 0.3634 0.1451 0.3566 0.3563 20.0

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0