|
--- |
|
base_model: BAAI/bge-large-en |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- dot_accuracy |
|
- manhattan_accuracy |
|
- euclidean_accuracy |
|
- max_accuracy |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:22604 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: 23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC |
|
Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations |
|
- QC Lab |
|
sentences: |
|
- 'mat-3783s5 : 3783 Seq 5 - Material Order' |
|
- '21-1313-2.0 : Layout Drawings' |
|
- '26-0500-1.0a : Breakers (2P 20A)' |
|
- source_sentence: 23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC |
|
Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations |
|
- QC Lab |
|
sentences: |
|
- '26-0500-1.3 : Cabling / Wiring' |
|
- '26-0500-1.0a : Breakers (2P 20A)' |
|
- '23-2000-1.1 : HWR and HWS Pipe, Valves and Fittings' |
|
- source_sentence: 3783 UC Davis (Northern Cal - Jon Sanguinetti)->Seq 5-P-3783 |
|
sentences: |
|
- 'mat-3783s8 : 3783 Seq 8 - Material Order' |
|
- 'mat-3783s5 : 3783 Seq 5 - Material Order' |
|
- 'mat-3786s18 : 3786 Seq 18 - Material Order' |
|
- source_sentence: 3786 Rady (Pacific - JD Hudson)->Seq 18-P-3786 |
|
sentences: |
|
- '26-0500-1.0a : Breakers (2P 20A)' |
|
- 'dwg-3786s18 : 3786 Seq 18 - Drawings' |
|
- '23-7000-4.0b : EAV-91623' |
|
- source_sentence: 3783 UC Davis (Northern Cal - Jon Sanguinetti)->Seq 18-P-3783 |
|
sentences: |
|
- 'mat-3783s5 : 3783 Seq 5 - Material Order' |
|
- 'dwg-3783s8 : 3783 Seq 8 - Drawings' |
|
- 'dwg-3783s18 : 3783 Seq 18 - Drawings' |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-large-en |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: custom bge dev |
|
type: custom-bge-dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9838187702265372 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.016181229773462782 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.9838187702265372 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.9838187702265372 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.9838187702265372 |
|
name: Max Accuracy |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: custom bge test |
|
type: custom-bge-test |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9838187702265372 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.016181229773462782 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.9838187702265372 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.9838187702265372 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.9838187702265372 |
|
name: Max Accuracy |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-large-en |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co./BAAI/bge-large-en). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-large-en](https://huggingface.co./BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("rnbokade/custom-bge") |
|
# Run inference |
|
sentences = [ |
|
'3783 UC Davis (Northern Cal - Jon Sanguinetti)->Seq 18-P-3783', |
|
'dwg-3783s18 : 3783 Seq 18 - Drawings', |
|
'mat-3783s5 : 3783 Seq 5 - Material Order', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
* Dataset: `custom-bge-dev` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.9838 | |
|
| dot_accuracy | 0.0162 | |
|
| manhattan_accuracy | 0.9838 | |
|
| euclidean_accuracy | 0.9838 | |
|
| **max_accuracy** | **0.9838** | |
|
|
|
#### Triplet |
|
* Dataset: `custom-bge-test` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.9838 | |
|
| dot_accuracy | 0.0162 | |
|
| manhattan_accuracy | 0.9838 | |
|
| euclidean_accuracy | 0.9838 | |
|
| **max_accuracy** | **0.9838** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 22,604 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 22 tokens</li><li>mean: 25.35 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 18.84 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.74 tokens</li><li>max: 38 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------|:--------------------------------------------------------| |
|
| <code>MOD 1- Metal Decking - Floor<br>Stud Wall Panels<br>Floor Sheathing (Megaboard) Layout of Dirtt Frame Centerlines</code> | <code>EW1001-125 : Door Slabs / Frames / Hardware</code> | <code>dwg-3783s16 : 3783 Seq 16 - Drawings</code> | |
|
| <code>MOD 1- Metal Decking - Floor<br>Stud Wall Panels<br>Floor Sheathing (Megaboard) Layout of Dirtt Frame Centerlines</code> | <code>EW1001-125 : Door Slabs / Frames / Hardware</code> | <code>mat-3783s16 : 3783 Seq 16 - Material Order</code> | |
|
| <code>MOD 1- Metal Decking - Floor<br>Stud Wall Panels<br>Floor Sheathing (Megaboard) Layout of Dirtt Frame Centerlines</code> | <code>EW1001-125 : Door Slabs / Frames / Hardware</code> | <code>dwg-3786s292 : 3786 Seq 292 - Drawings</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 618 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 22 tokens</li><li>mean: 33.18 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 17.48 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 17.48 tokens</li><li>max: 22 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------|:--------------------------------------------------------| |
|
| <code>23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab</code> | <code>26-0500-1.0 : Breakers (3P 20A)</code> | <code>dwg-3786s17 : 3786 Seq 17 - Drawings</code> | |
|
| <code>23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab</code> | <code>26-0500-1.0 : Breakers (3P 20A)</code> | <code>mat-3786s17 : 3786 Seq 17 - Material Order</code> | |
|
| <code>23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab</code> | <code>26-0500-1.0 : Breakers (3P 20A)</code> | <code>09-9000-2.0 : Paint and Coatings</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | custom-bge-dev_max_accuracy | custom-bge-test_max_accuracy | |
|
|:------:|:----:|:-------------:|:------:|:---------------------------:|:----------------------------:| |
|
| 0 | 0 | - | - | 0.8463 | - | |
|
| 0.0708 | 100 | 0.5651 | 0.6065 | 0.9919 | - | |
|
| 0.1415 | 200 | 0.168 | 0.4217 | 0.9935 | - | |
|
| 0.2123 | 300 | 0.0499 | 0.6747 | 0.9951 | - | |
|
| 0.2831 | 400 | 0.2205 | 0.8112 | 0.9951 | - | |
|
| 0.3539 | 500 | 0.1167 | 0.7040 | 0.9903 | - | |
|
| 0.4246 | 600 | 0.0968 | 0.7364 | 0.9822 | - | |
|
| 0.4954 | 700 | 0.1704 | 0.5540 | 0.9968 | - | |
|
| 0.5662 | 800 | 0.1104 | 0.7266 | 0.9951 | - | |
|
| 0.6369 | 900 | 0.1698 | 1.1020 | 0.9725 | - | |
|
| 0.7077 | 1000 | 0.1077 | 0.9028 | 0.9790 | - | |
|
| 0.7785 | 1100 | 0.1667 | 0.8478 | 0.9757 | - | |
|
| 0.8493 | 1200 | 0.0707 | 0.7629 | 0.9887 | - | |
|
| 0.9200 | 1300 | 0.0299 | 0.8024 | 0.9871 | - | |
|
| 0.9908 | 1400 | 0.0005 | 0.8161 | 0.9838 | - | |
|
| 1.0 | 1413 | - | - | - | 0.9838 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |