rnbokade commited on
Commit
862d053
1 Parent(s): f04ac4e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-large-en
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - dot_accuracy
9
+ - manhattan_accuracy
10
+ - euclidean_accuracy
11
+ - max_accuracy
12
+ pipeline_tag: sentence-similarity
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:22604
19
+ - loss:MultipleNegativesRankingLoss
20
+ widget:
21
+ - source_sentence: 23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC
22
+ Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations
23
+ - QC Lab
24
+ sentences:
25
+ - 'mat-3783s5 : 3783 Seq 5 - Material Order'
26
+ - '21-1313-2.0 : Layout Drawings'
27
+ - '26-0500-1.0a : Breakers (2P 20A)'
28
+ - source_sentence: 23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC
29
+ Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations
30
+ - QC Lab
31
+ sentences:
32
+ - '26-0500-1.3 : Cabling / Wiring'
33
+ - '26-0500-1.0a : Breakers (2P 20A)'
34
+ - '23-2000-1.1 : HWR and HWS Pipe, Valves and Fittings'
35
+ - source_sentence: 3783 UC Davis (Northern Cal - Jon Sanguinetti)->Seq 5-P-3783
36
+ sentences:
37
+ - 'mat-3783s8 : 3783 Seq 8 - Material Order'
38
+ - 'mat-3783s5 : 3783 Seq 5 - Material Order'
39
+ - 'mat-3786s18 : 3786 Seq 18 - Material Order'
40
+ - source_sentence: 3786 Rady (Pacific - JD Hudson)->Seq 18-P-3786
41
+ sentences:
42
+ - '26-0500-1.0a : Breakers (2P 20A)'
43
+ - 'dwg-3786s18 : 3786 Seq 18 - Drawings'
44
+ - '23-7000-4.0b : EAV-91623'
45
+ - source_sentence: 3783 UC Davis (Northern Cal - Jon Sanguinetti)->Seq 18-P-3783
46
+ sentences:
47
+ - 'mat-3783s5 : 3783 Seq 5 - Material Order'
48
+ - 'dwg-3783s8 : 3783 Seq 8 - Drawings'
49
+ - 'dwg-3783s18 : 3783 Seq 18 - Drawings'
50
+ model-index:
51
+ - name: SentenceTransformer based on BAAI/bge-large-en
52
+ results:
53
+ - task:
54
+ type: triplet
55
+ name: Triplet
56
+ dataset:
57
+ name: custom bge dev
58
+ type: custom-bge-dev
59
+ metrics:
60
+ - type: cosine_accuracy
61
+ value: 0.9838187702265372
62
+ name: Cosine Accuracy
63
+ - type: dot_accuracy
64
+ value: 0.016181229773462782
65
+ name: Dot Accuracy
66
+ - type: manhattan_accuracy
67
+ value: 0.9838187702265372
68
+ name: Manhattan Accuracy
69
+ - type: euclidean_accuracy
70
+ value: 0.9838187702265372
71
+ name: Euclidean Accuracy
72
+ - type: max_accuracy
73
+ value: 0.9838187702265372
74
+ name: Max Accuracy
75
+ - task:
76
+ type: triplet
77
+ name: Triplet
78
+ dataset:
79
+ name: custom bge test
80
+ type: custom-bge-test
81
+ metrics:
82
+ - type: cosine_accuracy
83
+ value: 0.9838187702265372
84
+ name: Cosine Accuracy
85
+ - type: dot_accuracy
86
+ value: 0.016181229773462782
87
+ name: Dot Accuracy
88
+ - type: manhattan_accuracy
89
+ value: 0.9838187702265372
90
+ name: Manhattan Accuracy
91
+ - type: euclidean_accuracy
92
+ value: 0.9838187702265372
93
+ name: Euclidean Accuracy
94
+ - type: max_accuracy
95
+ value: 0.9838187702265372
96
+ name: Max Accuracy
97
+ ---
98
+
99
+ # SentenceTransformer based on BAAI/bge-large-en
100
+
101
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
102
+
103
+ ## Model Details
104
+
105
+ ### Model Description
106
+ - **Model Type:** Sentence Transformer
107
+ - **Base model:** [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 -->
108
+ - **Maximum Sequence Length:** 512 tokens
109
+ - **Output Dimensionality:** 1024 tokens
110
+ - **Similarity Function:** Cosine Similarity
111
+ <!-- - **Training Dataset:** Unknown -->
112
+ <!-- - **Language:** Unknown -->
113
+ <!-- - **License:** Unknown -->
114
+
115
+ ### Model Sources
116
+
117
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
118
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
119
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
120
+
121
+ ### Full Model Architecture
122
+
123
+ ```
124
+ SentenceTransformer(
125
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
126
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
127
+ (2): Normalize()
128
+ )
129
+ ```
130
+
131
+ ## Usage
132
+
133
+ ### Direct Usage (Sentence Transformers)
134
+
135
+ First install the Sentence Transformers library:
136
+
137
+ ```bash
138
+ pip install -U sentence-transformers
139
+ ```
140
+
141
+ Then you can load this model and run inference.
142
+ ```python
143
+ from sentence_transformers import SentenceTransformer
144
+
145
+ # Download from the 🤗 Hub
146
+ model = SentenceTransformer("rnbokade/custom-bge")
147
+ # Run inference
148
+ sentences = [
149
+ '3783 UC Davis (Northern Cal - Jon Sanguinetti)->Seq 18-P-3783',
150
+ 'dwg-3783s18 : 3783 Seq 18 - Drawings',
151
+ 'mat-3783s5 : 3783 Seq 5 - Material Order',
152
+ ]
153
+ embeddings = model.encode(sentences)
154
+ print(embeddings.shape)
155
+ # [3, 1024]
156
+
157
+ # Get the similarity scores for the embeddings
158
+ similarities = model.similarity(embeddings, embeddings)
159
+ print(similarities.shape)
160
+ # [3, 3]
161
+ ```
162
+
163
+ <!--
164
+ ### Direct Usage (Transformers)
165
+
166
+ <details><summary>Click to see the direct usage in Transformers</summary>
167
+
168
+ </details>
169
+ -->
170
+
171
+ <!--
172
+ ### Downstream Usage (Sentence Transformers)
173
+
174
+ You can finetune this model on your own dataset.
175
+
176
+ <details><summary>Click to expand</summary>
177
+
178
+ </details>
179
+ -->
180
+
181
+ <!--
182
+ ### Out-of-Scope Use
183
+
184
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
185
+ -->
186
+
187
+ ## Evaluation
188
+
189
+ ### Metrics
190
+
191
+ #### Triplet
192
+ * Dataset: `custom-bge-dev`
193
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
194
+
195
+ | Metric | Value |
196
+ |:-------------------|:-----------|
197
+ | cosine_accuracy | 0.9838 |
198
+ | dot_accuracy | 0.0162 |
199
+ | manhattan_accuracy | 0.9838 |
200
+ | euclidean_accuracy | 0.9838 |
201
+ | **max_accuracy** | **0.9838** |
202
+
203
+ #### Triplet
204
+ * Dataset: `custom-bge-test`
205
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
206
+
207
+ | Metric | Value |
208
+ |:-------------------|:-----------|
209
+ | cosine_accuracy | 0.9838 |
210
+ | dot_accuracy | 0.0162 |
211
+ | manhattan_accuracy | 0.9838 |
212
+ | euclidean_accuracy | 0.9838 |
213
+ | **max_accuracy** | **0.9838** |
214
+
215
+ <!--
216
+ ## Bias, Risks and Limitations
217
+
218
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
219
+ -->
220
+
221
+ <!--
222
+ ### Recommendations
223
+
224
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
225
+ -->
226
+
227
+ ## Training Details
228
+
229
+ ### Training Dataset
230
+
231
+ #### Unnamed Dataset
232
+
233
+
234
+ * Size: 22,604 training samples
235
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
236
+ * Approximate statistics based on the first 1000 samples:
237
+ | | anchor | positive | negative |
238
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
239
+ | type | string | string | string |
240
+ | details | <ul><li>min: 22 tokens</li><li>mean: 25.35 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 18.84 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.74 tokens</li><li>max: 38 tokens</li></ul> |
241
+ * Samples:
242
+ | anchor | positive | negative |
243
+ |:-------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------|:--------------------------------------------------------|
244
+ | <code>MOD 1- Metal Decking - Floor<br>Stud Wall Panels<br>Floor Sheathing (Megaboard) Layout of Dirtt Frame Centerlines</code> | <code>EW1001-125 : Door Slabs / Frames / Hardware</code> | <code>dwg-3783s16 : 3783 Seq 16 - Drawings</code> |
245
+ | <code>MOD 1- Metal Decking - Floor<br>Stud Wall Panels<br>Floor Sheathing (Megaboard) Layout of Dirtt Frame Centerlines</code> | <code>EW1001-125 : Door Slabs / Frames / Hardware</code> | <code>mat-3783s16 : 3783 Seq 16 - Material Order</code> |
246
+ | <code>MOD 1- Metal Decking - Floor<br>Stud Wall Panels<br>Floor Sheathing (Megaboard) Layout of Dirtt Frame Centerlines</code> | <code>EW1001-125 : Door Slabs / Frames / Hardware</code> | <code>dwg-3786s292 : 3786 Seq 292 - Drawings</code> |
247
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
248
+ ```json
249
+ {
250
+ "scale": 20.0,
251
+ "similarity_fct": "cos_sim"
252
+ }
253
+ ```
254
+
255
+ ### Evaluation Dataset
256
+
257
+ #### Unnamed Dataset
258
+
259
+
260
+ * Size: 618 evaluation samples
261
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
262
+ * Approximate statistics based on the first 1000 samples:
263
+ | | anchor | positive | negative |
264
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
265
+ | type | string | string | string |
266
+ | details | <ul><li>min: 22 tokens</li><li>mean: 33.18 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 17.48 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 17.48 tokens</li><li>max: 22 tokens</li></ul> |
267
+ * Samples:
268
+ | anchor | positive | negative |
269
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------|:--------------------------------------------------------|
270
+ | <code>23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab</code> | <code>26-0500-1.0 : Breakers (3P 20A)</code> | <code>dwg-3786s17 : 3786 Seq 17 - Drawings</code> |
271
+ | <code>23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab</code> | <code>26-0500-1.0 : Breakers (3P 20A)</code> | <code>mat-3786s17 : 3786 Seq 17 - Material Order</code> |
272
+ | <code>23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab</code> | <code>26-0500-1.0 : Breakers (3P 20A)</code> | <code>09-9000-2.0 : Paint and Coatings</code> |
273
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
274
+ ```json
275
+ {
276
+ "scale": 20.0,
277
+ "similarity_fct": "cos_sim"
278
+ }
279
+ ```
280
+
281
+ ### Training Hyperparameters
282
+ #### Non-Default Hyperparameters
283
+
284
+ - `eval_strategy`: steps
285
+ - `per_device_train_batch_size`: 16
286
+ - `per_device_eval_batch_size`: 16
287
+ - `num_train_epochs`: 1
288
+ - `warmup_ratio`: 0.1
289
+ - `fp16`: True
290
+ - `batch_sampler`: no_duplicates
291
+
292
+ #### All Hyperparameters
293
+ <details><summary>Click to expand</summary>
294
+
295
+ - `overwrite_output_dir`: False
296
+ - `do_predict`: False
297
+ - `eval_strategy`: steps
298
+ - `prediction_loss_only`: True
299
+ - `per_device_train_batch_size`: 16
300
+ - `per_device_eval_batch_size`: 16
301
+ - `per_gpu_train_batch_size`: None
302
+ - `per_gpu_eval_batch_size`: None
303
+ - `gradient_accumulation_steps`: 1
304
+ - `eval_accumulation_steps`: None
305
+ - `learning_rate`: 5e-05
306
+ - `weight_decay`: 0.0
307
+ - `adam_beta1`: 0.9
308
+ - `adam_beta2`: 0.999
309
+ - `adam_epsilon`: 1e-08
310
+ - `max_grad_norm`: 1.0
311
+ - `num_train_epochs`: 1
312
+ - `max_steps`: -1
313
+ - `lr_scheduler_type`: linear
314
+ - `lr_scheduler_kwargs`: {}
315
+ - `warmup_ratio`: 0.1
316
+ - `warmup_steps`: 0
317
+ - `log_level`: passive
318
+ - `log_level_replica`: warning
319
+ - `log_on_each_node`: True
320
+ - `logging_nan_inf_filter`: True
321
+ - `save_safetensors`: True
322
+ - `save_on_each_node`: False
323
+ - `save_only_model`: False
324
+ - `restore_callback_states_from_checkpoint`: False
325
+ - `no_cuda`: False
326
+ - `use_cpu`: False
327
+ - `use_mps_device`: False
328
+ - `seed`: 42
329
+ - `data_seed`: None
330
+ - `jit_mode_eval`: False
331
+ - `use_ipex`: False
332
+ - `bf16`: False
333
+ - `fp16`: True
334
+ - `fp16_opt_level`: O1
335
+ - `half_precision_backend`: auto
336
+ - `bf16_full_eval`: False
337
+ - `fp16_full_eval`: False
338
+ - `tf32`: None
339
+ - `local_rank`: 0
340
+ - `ddp_backend`: None
341
+ - `tpu_num_cores`: None
342
+ - `tpu_metrics_debug`: False
343
+ - `debug`: []
344
+ - `dataloader_drop_last`: False
345
+ - `dataloader_num_workers`: 0
346
+ - `dataloader_prefetch_factor`: None
347
+ - `past_index`: -1
348
+ - `disable_tqdm`: False
349
+ - `remove_unused_columns`: True
350
+ - `label_names`: None
351
+ - `load_best_model_at_end`: False
352
+ - `ignore_data_skip`: False
353
+ - `fsdp`: []
354
+ - `fsdp_min_num_params`: 0
355
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
356
+ - `fsdp_transformer_layer_cls_to_wrap`: None
357
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
358
+ - `deepspeed`: None
359
+ - `label_smoothing_factor`: 0.0
360
+ - `optim`: adamw_torch
361
+ - `optim_args`: None
362
+ - `adafactor`: False
363
+ - `group_by_length`: False
364
+ - `length_column_name`: length
365
+ - `ddp_find_unused_parameters`: None
366
+ - `ddp_bucket_cap_mb`: None
367
+ - `ddp_broadcast_buffers`: False
368
+ - `dataloader_pin_memory`: True
369
+ - `dataloader_persistent_workers`: False
370
+ - `skip_memory_metrics`: True
371
+ - `use_legacy_prediction_loop`: False
372
+ - `push_to_hub`: False
373
+ - `resume_from_checkpoint`: None
374
+ - `hub_model_id`: None
375
+ - `hub_strategy`: every_save
376
+ - `hub_private_repo`: False
377
+ - `hub_always_push`: False
378
+ - `gradient_checkpointing`: False
379
+ - `gradient_checkpointing_kwargs`: None
380
+ - `include_inputs_for_metrics`: False
381
+ - `eval_do_concat_batches`: True
382
+ - `fp16_backend`: auto
383
+ - `push_to_hub_model_id`: None
384
+ - `push_to_hub_organization`: None
385
+ - `mp_parameters`:
386
+ - `auto_find_batch_size`: False
387
+ - `full_determinism`: False
388
+ - `torchdynamo`: None
389
+ - `ray_scope`: last
390
+ - `ddp_timeout`: 1800
391
+ - `torch_compile`: False
392
+ - `torch_compile_backend`: None
393
+ - `torch_compile_mode`: None
394
+ - `dispatch_batches`: None
395
+ - `split_batches`: None
396
+ - `include_tokens_per_second`: False
397
+ - `include_num_input_tokens_seen`: False
398
+ - `neftune_noise_alpha`: None
399
+ - `optim_target_modules`: None
400
+ - `batch_eval_metrics`: False
401
+ - `eval_on_start`: False
402
+ - `batch_sampler`: no_duplicates
403
+ - `multi_dataset_batch_sampler`: proportional
404
+
405
+ </details>
406
+
407
+ ### Training Logs
408
+ | Epoch | Step | Training Loss | loss | custom-bge-dev_max_accuracy | custom-bge-test_max_accuracy |
409
+ |:------:|:----:|:-------------:|:------:|:---------------------------:|:----------------------------:|
410
+ | 0 | 0 | - | - | 0.8463 | - |
411
+ | 0.0708 | 100 | 0.5651 | 0.6065 | 0.9919 | - |
412
+ | 0.1415 | 200 | 0.168 | 0.4217 | 0.9935 | - |
413
+ | 0.2123 | 300 | 0.0499 | 0.6747 | 0.9951 | - |
414
+ | 0.2831 | 400 | 0.2205 | 0.8112 | 0.9951 | - |
415
+ | 0.3539 | 500 | 0.1167 | 0.7040 | 0.9903 | - |
416
+ | 0.4246 | 600 | 0.0968 | 0.7364 | 0.9822 | - |
417
+ | 0.4954 | 700 | 0.1704 | 0.5540 | 0.9968 | - |
418
+ | 0.5662 | 800 | 0.1104 | 0.7266 | 0.9951 | - |
419
+ | 0.6369 | 900 | 0.1698 | 1.1020 | 0.9725 | - |
420
+ | 0.7077 | 1000 | 0.1077 | 0.9028 | 0.9790 | - |
421
+ | 0.7785 | 1100 | 0.1667 | 0.8478 | 0.9757 | - |
422
+ | 0.8493 | 1200 | 0.0707 | 0.7629 | 0.9887 | - |
423
+ | 0.9200 | 1300 | 0.0299 | 0.8024 | 0.9871 | - |
424
+ | 0.9908 | 1400 | 0.0005 | 0.8161 | 0.9838 | - |
425
+ | 1.0 | 1413 | - | - | - | 0.9838 |
426
+
427
+
428
+ ### Framework Versions
429
+ - Python: 3.10.12
430
+ - Sentence Transformers: 3.0.1
431
+ - Transformers: 4.42.4
432
+ - PyTorch: 2.3.1+cu121
433
+ - Accelerate: 0.32.1
434
+ - Datasets: 2.21.0
435
+ - Tokenizers: 0.19.1
436
+
437
+ ## Citation
438
+
439
+ ### BibTeX
440
+
441
+ #### Sentence Transformers
442
+ ```bibtex
443
+ @inproceedings{reimers-2019-sentence-bert,
444
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
445
+ author = "Reimers, Nils and Gurevych, Iryna",
446
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
447
+ month = "11",
448
+ year = "2019",
449
+ publisher = "Association for Computational Linguistics",
450
+ url = "https://arxiv.org/abs/1908.10084",
451
+ }
452
+ ```
453
+
454
+ #### MultipleNegativesRankingLoss
455
+ ```bibtex
456
+ @misc{henderson2017efficient,
457
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
458
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
459
+ year={2017},
460
+ eprint={1705.00652},
461
+ archivePrefix={arXiv},
462
+ primaryClass={cs.CL}
463
+ }
464
+ ```
465
+
466
+ <!--
467
+ ## Glossary
468
+
469
+ *Clearly define terms in order to be accessible across audiences.*
470
+ -->
471
+
472
+ <!--
473
+ ## Model Card Authors
474
+
475
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
476
+ -->
477
+
478
+ <!--
479
+ ## Model Card Contact
480
+
481
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
482
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-large-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:884cbb86afb3d05b5aea3a775a87d338ebac2f8f33a8b90f355e6023386c0447
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff