metadata
base_model: BAAI/bge-large-en
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:22604
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218
Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations -
QC Lab
sentences:
- 'mat-3783s5 : 3783 Seq 5 - Material Order'
- '21-1313-2.0 : Layout Drawings'
- '26-0500-1.0a : Breakers (2P 20A)'
- source_sentence: >-
23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218
Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations -
QC Lab
sentences:
- '26-0500-1.3 : Cabling / Wiring'
- '26-0500-1.0a : Breakers (2P 20A)'
- '23-2000-1.1 : HWR and HWS Pipe, Valves and Fittings'
- source_sentence: 3783 UC Davis (Northern Cal - Jon Sanguinetti)->Seq 5-P-3783
sentences:
- 'mat-3783s8 : 3783 Seq 8 - Material Order'
- 'mat-3783s5 : 3783 Seq 5 - Material Order'
- 'mat-3786s18 : 3786 Seq 18 - Material Order'
- source_sentence: 3786 Rady (Pacific - JD Hudson)->Seq 18-P-3786
sentences:
- '26-0500-1.0a : Breakers (2P 20A)'
- 'dwg-3786s18 : 3786 Seq 18 - Drawings'
- '23-7000-4.0b : EAV-91623'
- source_sentence: 3783 UC Davis (Northern Cal - Jon Sanguinetti)->Seq 18-P-3783
sentences:
- 'mat-3783s5 : 3783 Seq 5 - Material Order'
- 'dwg-3783s8 : 3783 Seq 8 - Drawings'
- 'dwg-3783s18 : 3783 Seq 18 - Drawings'
model-index:
- name: SentenceTransformer based on BAAI/bge-large-en
results:
- task:
type: triplet
name: Triplet
dataset:
name: custom bge dev
type: custom-bge-dev
metrics:
- type: cosine_accuracy
value: 0.9838187702265372
name: Cosine Accuracy
- type: dot_accuracy
value: 0.016181229773462782
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9838187702265372
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9838187702265372
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9838187702265372
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: custom bge test
type: custom-bge-test
metrics:
- type: cosine_accuracy
value: 0.9838187702265372
name: Cosine Accuracy
- type: dot_accuracy
value: 0.016181229773462782
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9838187702265372
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9838187702265372
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9838187702265372
name: Max Accuracy
SentenceTransformer based on BAAI/bge-large-en
This is a sentence-transformers model finetuned from BAAI/bge-large-en. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("rnbokade/custom-bge")
# Run inference
sentences = [
'3783 UC Davis (Northern Cal - Jon Sanguinetti)->Seq 18-P-3783',
'dwg-3783s18 : 3783 Seq 18 - Drawings',
'mat-3783s5 : 3783 Seq 5 - Material Order',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
custom-bge-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9838 |
dot_accuracy | 0.0162 |
manhattan_accuracy | 0.9838 |
euclidean_accuracy | 0.9838 |
max_accuracy | 0.9838 |
Triplet
- Dataset:
custom-bge-test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9838 |
dot_accuracy | 0.0162 |
manhattan_accuracy | 0.9838 |
euclidean_accuracy | 0.9838 |
max_accuracy | 0.9838 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 22,604 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 22 tokens
- mean: 25.35 tokens
- max: 27 tokens
- min: 15 tokens
- mean: 18.84 tokens
- max: 24 tokens
- min: 6 tokens
- mean: 16.74 tokens
- max: 38 tokens
- Samples:
anchor positive negative MOD 1- Metal Decking - Floor
Stud Wall Panels
Floor Sheathing (Megaboard) Layout of Dirtt Frame CenterlinesEW1001-125 : Door Slabs / Frames / Hardware
dwg-3783s16 : 3783 Seq 16 - Drawings
MOD 1- Metal Decking - Floor
Stud Wall Panels
Floor Sheathing (Megaboard) Layout of Dirtt Frame CenterlinesEW1001-125 : Door Slabs / Frames / Hardware
mat-3783s16 : 3783 Seq 16 - Material Order
MOD 1- Metal Decking - Floor
Stud Wall Panels
Floor Sheathing (Megaboard) Layout of Dirtt Frame CenterlinesEW1001-125 : Door Slabs / Frames / Hardware
dwg-3786s292 : 3786 Seq 292 - Drawings
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 618 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 22 tokens
- mean: 33.18 tokens
- max: 45 tokens
- min: 13 tokens
- mean: 17.48 tokens
- max: 22 tokens
- min: 13 tokens
- mean: 17.48 tokens
- max: 22 tokens
- Samples:
anchor positive negative 23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab
26-0500-1.0 : Breakers (3P 20A)
dwg-3786s17 : 3786 Seq 17 - Drawings
23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab
26-0500-1.0 : Breakers (3P 20A)
mat-3786s17 : 3786 Seq 17 - Material Order
23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab
26-0500-1.0 : Breakers (3P 20A)
09-9000-2.0 : Paint and Coatings
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | custom-bge-dev_max_accuracy | custom-bge-test_max_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 0.8463 | - |
0.0708 | 100 | 0.5651 | 0.6065 | 0.9919 | - |
0.1415 | 200 | 0.168 | 0.4217 | 0.9935 | - |
0.2123 | 300 | 0.0499 | 0.6747 | 0.9951 | - |
0.2831 | 400 | 0.2205 | 0.8112 | 0.9951 | - |
0.3539 | 500 | 0.1167 | 0.7040 | 0.9903 | - |
0.4246 | 600 | 0.0968 | 0.7364 | 0.9822 | - |
0.4954 | 700 | 0.1704 | 0.5540 | 0.9968 | - |
0.5662 | 800 | 0.1104 | 0.7266 | 0.9951 | - |
0.6369 | 900 | 0.1698 | 1.1020 | 0.9725 | - |
0.7077 | 1000 | 0.1077 | 0.9028 | 0.9790 | - |
0.7785 | 1100 | 0.1667 | 0.8478 | 0.9757 | - |
0.8493 | 1200 | 0.0707 | 0.7629 | 0.9887 | - |
0.9200 | 1300 | 0.0299 | 0.8024 | 0.9871 | - |
0.9908 | 1400 | 0.0005 | 0.8161 | 0.9838 | - |
1.0 | 1413 | - | - | - | 0.9838 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}