metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:882
- loss:MatryoshkaLoss
- loss:TripletLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
hide: footer
Fields
Fields in Argilla are define the content of a record that will be reviewed
by a user.
sentences:
- >-
The tourists tried to hide their footprints in the sand as they walked
along the deserted beach.
- >-
Can the rg.Suggestion class be used to handle model predictions in
Argilla?
- >-
Can users customize the fields in Argilla to fit their specific
annotation needs?
- source_sentence: >-
=== "Single condition"
=== "Multiple conditions"
Filter by status
You can filter records based on their status. The status can be pending,
draft, submitted, or discarded.
```python
import argilla_sdk as rg
client = rg.Argilla(api_url="", api_key="")
workspace = client.workspaces("my_workspace")
dataset = client.datasets(name="my_dataset", workspace=workspace)
status_filter = rg.Query(
filter = rg.Filter(("status", "==", "submitted"))
)
sentences:
- The submitted application was rejected due to incomplete documentation.
- How can I apply filters to records by their status in Argilla?
- >-
Can Argilla's IntegerMetadataProperty support a range of integer values
as metadata?
- source_sentence: >-
description: In this section, we will provide a step-by-step guide to show
how to filter and query a dataset.
Query, filter, and export records
This guide provides an overview of how to query and filter a dataset in
Argilla and export records.
sentences:
- >-
The new restaurant in town offers a unique filter coffee that is a
must-try for coffee enthusiasts.
- >-
Is it possible to design a user role with tailored access permissions
within Argilla?
- >-
Can Argilla be employed to search and filter datasets based on
particular requirements or keywords?
- source_sentence: >-
hide: footer
Fields
Fields in Argilla are define the content of a record that will be reviewed
by a user.
sentences:
- >-
Is it possible for annotators to tailor Argilla's fields to their unique
annotation requirements?
- >-
The tourists tried to hide their footprints in the sand as they walked
along the deserted beach.
- >-
Can this partnership with Prolific provide researchers with a broader
range of annotators to draw from, enhancing the quality of their
studies?
- source_sentence: >-
hide: footer
rg.Argilla
To interact with the Argilla server from python you can use the Argilla
class. The Argilla client is used to create, get, update, and delete all
Argilla resources, such as workspaces, users, datasets, and records.
Usage Examples
Connecting to an Argilla server
To connect to an Argilla server, instantiate the Argilla class and pass
the api_url of the server and the api_key to authenticate.
```python
import argilla_sdk as rg
sentences:
- >-
Can the Argilla class be employed to streamline dataset administration
tasks in my Argilla server setup?
- >-
Is it possible to create new data entries in my dataset via Argilla's
annotation tools?
- The Argilla flowers were blooming beautifully in the garden.
pipeline_tag: sentence-similarity
model-index:
- name: BGE base ArgillaSDK Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.1326530612244898
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2857142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3877551020408163
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5204081632653061
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1326530612244898
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09523809523809525
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07755102040816327
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05204081632653061
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1326530612244898
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2857142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3877551020408163
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5204081632653061
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3086125494748455
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.24321752510528016
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.26038538311827203
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.10204081632653061
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2755102040816326
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3877551020408163
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5102040816326531
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.10204081632653061
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09183673469387756
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07755102040816327
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05102040816326531
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10204081632653061
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2755102040816326
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3877551020408163
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5102040816326531
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.29420081448590024
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.22640913508260446
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.24259809105769914
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.12244897959183673
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2755102040816326
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3877551020408163
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12244897959183673
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09183673469387753
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07755102040816327
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.049999999999999996
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12244897959183673
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2755102040816326
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3877551020408163
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2931450934182018
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2290937803692905
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.24454883014070852
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.09183673469387756
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.25510204081632654
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3163265306122449
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.46938775510204084
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.09183673469387756
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08503401360544219
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06326530612244897
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.046938775510204075
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09183673469387756
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.25510204081632654
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3163265306122449
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.46938775510204084
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2629197762336244
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1992265954000647
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2164845577697655
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.08163265306122448
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.25510204081632654
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3163265306122449
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.47959183673469385
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08163265306122448
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08503401360544219
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06326530612244897
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04795918367346938
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08163265306122448
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.25510204081632654
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3163265306122449
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.47959183673469385
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2610977190273289
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.19399497894395853
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.20591442395637935
name: Cosine Map@100
BGE base ArgillaSDK Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("plaguss/bge-base-argilla-sdk-matryoshka")
sentences = [
'hide: footer\n\nrg.Argilla\n\nTo interact with the Argilla server from python you can use the Argilla class. The Argilla client is used to create, get, update, and delete all Argilla resources, such as workspaces, users, datasets, and records.\n\nUsage Examples\n\nConnecting to an Argilla server\n\nTo connect to an Argilla server, instantiate the Argilla class and pass the api_url of the server and the api_key to authenticate.\n\n```python\nimport argilla_sdk as rg',
'Can the Argilla class be employed to streamline dataset administration tasks in my Argilla server setup?',
'The Argilla flowers were blooming beautifully in the garden.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1327 |
cosine_accuracy@3 |
0.2857 |
cosine_accuracy@5 |
0.3878 |
cosine_accuracy@10 |
0.5204 |
cosine_precision@1 |
0.1327 |
cosine_precision@3 |
0.0952 |
cosine_precision@5 |
0.0776 |
cosine_precision@10 |
0.052 |
cosine_recall@1 |
0.1327 |
cosine_recall@3 |
0.2857 |
cosine_recall@5 |
0.3878 |
cosine_recall@10 |
0.5204 |
cosine_ndcg@10 |
0.3086 |
cosine_mrr@10 |
0.2432 |
cosine_map@100 |
0.2604 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.102 |
cosine_accuracy@3 |
0.2755 |
cosine_accuracy@5 |
0.3878 |
cosine_accuracy@10 |
0.5102 |
cosine_precision@1 |
0.102 |
cosine_precision@3 |
0.0918 |
cosine_precision@5 |
0.0776 |
cosine_precision@10 |
0.051 |
cosine_recall@1 |
0.102 |
cosine_recall@3 |
0.2755 |
cosine_recall@5 |
0.3878 |
cosine_recall@10 |
0.5102 |
cosine_ndcg@10 |
0.2942 |
cosine_mrr@10 |
0.2264 |
cosine_map@100 |
0.2426 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1224 |
cosine_accuracy@3 |
0.2755 |
cosine_accuracy@5 |
0.3878 |
cosine_accuracy@10 |
0.5 |
cosine_precision@1 |
0.1224 |
cosine_precision@3 |
0.0918 |
cosine_precision@5 |
0.0776 |
cosine_precision@10 |
0.05 |
cosine_recall@1 |
0.1224 |
cosine_recall@3 |
0.2755 |
cosine_recall@5 |
0.3878 |
cosine_recall@10 |
0.5 |
cosine_ndcg@10 |
0.2931 |
cosine_mrr@10 |
0.2291 |
cosine_map@100 |
0.2445 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0918 |
cosine_accuracy@3 |
0.2551 |
cosine_accuracy@5 |
0.3163 |
cosine_accuracy@10 |
0.4694 |
cosine_precision@1 |
0.0918 |
cosine_precision@3 |
0.085 |
cosine_precision@5 |
0.0633 |
cosine_precision@10 |
0.0469 |
cosine_recall@1 |
0.0918 |
cosine_recall@3 |
0.2551 |
cosine_recall@5 |
0.3163 |
cosine_recall@10 |
0.4694 |
cosine_ndcg@10 |
0.2629 |
cosine_mrr@10 |
0.1992 |
cosine_map@100 |
0.2165 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0816 |
cosine_accuracy@3 |
0.2551 |
cosine_accuracy@5 |
0.3163 |
cosine_accuracy@10 |
0.4796 |
cosine_precision@1 |
0.0816 |
cosine_precision@3 |
0.085 |
cosine_precision@5 |
0.0633 |
cosine_precision@10 |
0.048 |
cosine_recall@1 |
0.0816 |
cosine_recall@3 |
0.2551 |
cosine_recall@5 |
0.3163 |
cosine_recall@10 |
0.4796 |
cosine_ndcg@10 |
0.2611 |
cosine_mrr@10 |
0.194 |
cosine_map@100 |
0.2059 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 882 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 6 tokens
- mean: 90.85 tokens
- max: 198 tokens
|
- min: 8 tokens
- mean: 25.44 tokens
- max: 91 tokens
|
- min: 10 tokens
- mean: 22.33 tokens
- max: 61 tokens
|
- Samples:
anchor |
positive |
negative |
`` !!! note "Update the metadata" ThemetadataofRecordobject is a python dictionary. So to update the metadata of a record, you can iterate over the records and update the metadata by key or usingmetadata.update`. After that, you should update the records in the dataset. |
Can I use Argilla to annotate the metadata of Record objects and update them in the dataset? |
The beautiful scenery of the Argilla valley in Italy is perfect for a relaxing summer vacation. |
git checkout [branch-name] git rebase [default-branch]
<br><br>If everything is right, we need to commit and push the changes to your fork. For that, run the following commands:<br><br> sh
Add the changes to the staging area
git add filename
Commit the changes by writing a proper message
git commit -m "commit-message"
Push the changes to your fork |
Can I commit Argilla's annotation changes and push them to a forked project repository after rebasing from the default branch? |
The beautiful beach in Argilla, Spain, is a popular spot for surfers to catch a wave and enjoy the sunny weather. |
Accessing Record Attributes
The Record object has suggestions, responses, metadata, and vectors attributes that can be accessed directly whilst iterating over records in a dataset.
python for record in dataset.records( with_suggestions=True, with_responses=True, with_metadata=True, with_vectors=True ): print(record.suggestions) print(record.responses) print(record.metadata) print(record.vectors) |
Is it possible to retrieve the suggestions, responses, metadata, and vectors of a Record object at the same time when iterating over a dataset in Argilla? |
The new hiking trail offered breathtaking suggestions for scenic views, responses to environmental concerns, and metadata about the surrounding ecosystem, but it lacked vectors for navigation. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "TripletLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_eval_batch_size
: 4
gradient_accumulation_steps
: 4
learning_rate
: 2e-05
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 8
per_device_eval_batch_size
: 4
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 4
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 3
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.1802 |
5 |
21.701 |
- |
- |
- |
- |
- |
0.3604 |
10 |
21.7449 |
- |
- |
- |
- |
- |
0.5405 |
15 |
21.7453 |
- |
- |
- |
- |
- |
0.7207 |
20 |
21.7168 |
- |
- |
- |
- |
- |
0.9009 |
25 |
21.6945 |
- |
- |
- |
- |
- |
0.973 |
27 |
- |
0.2165 |
0.2445 |
0.2426 |
0.2059 |
0.2604 |
1.0811 |
30 |
21.7248 |
- |
- |
- |
- |
- |
1.2613 |
35 |
21.7322 |
- |
- |
- |
- |
- |
1.4414 |
40 |
21.7367 |
- |
- |
- |
- |
- |
1.6216 |
45 |
21.6821 |
- |
- |
- |
- |
- |
1.8018 |
50 |
21.8392 |
- |
- |
- |
- |
- |
1.9820 |
55 |
21.6441 |
0.2165 |
0.2445 |
0.2426 |
0.2059 |
0.2604 |
2.1622 |
60 |
21.8154 |
- |
- |
- |
- |
- |
2.3423 |
65 |
21.7098 |
- |
- |
- |
- |
- |
2.5225 |
70 |
21.6447 |
- |
- |
- |
- |
- |
2.7027 |
75 |
21.6033 |
- |
- |
- |
- |
- |
2.8829 |
80 |
21.8271 |
- |
- |
- |
- |
- |
2.9189 |
81 |
- |
0.2165 |
0.2445 |
0.2426 |
0.2059 |
0.2604 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}