BGE base ArgillaSDK Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("plaguss/bge-base-argilla-sdk-matryoshka")
sentences = [
'hide: footer\n\nrg.Argilla\n\nTo interact with the Argilla server from python you can use the Argilla class. The Argilla client is used to create, get, update, and delete all Argilla resources, such as workspaces, users, datasets, and records.\n\nUsage Examples\n\nConnecting to an Argilla server\n\nTo connect to an Argilla server, instantiate the Argilla class and pass the api_url of the server and the api_key to authenticate.\n\n```python\nimport argilla_sdk as rg',
'Can the Argilla class be employed to streamline dataset administration tasks in my Argilla server setup?',
'The Argilla flowers were blooming beautifully in the garden.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1327 |
cosine_accuracy@3 |
0.2857 |
cosine_accuracy@5 |
0.3878 |
cosine_accuracy@10 |
0.5204 |
cosine_precision@1 |
0.1327 |
cosine_precision@3 |
0.0952 |
cosine_precision@5 |
0.0776 |
cosine_precision@10 |
0.052 |
cosine_recall@1 |
0.1327 |
cosine_recall@3 |
0.2857 |
cosine_recall@5 |
0.3878 |
cosine_recall@10 |
0.5204 |
cosine_ndcg@10 |
0.3086 |
cosine_mrr@10 |
0.2432 |
cosine_map@100 |
0.2604 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.102 |
cosine_accuracy@3 |
0.2755 |
cosine_accuracy@5 |
0.3878 |
cosine_accuracy@10 |
0.5102 |
cosine_precision@1 |
0.102 |
cosine_precision@3 |
0.0918 |
cosine_precision@5 |
0.0776 |
cosine_precision@10 |
0.051 |
cosine_recall@1 |
0.102 |
cosine_recall@3 |
0.2755 |
cosine_recall@5 |
0.3878 |
cosine_recall@10 |
0.5102 |
cosine_ndcg@10 |
0.2942 |
cosine_mrr@10 |
0.2264 |
cosine_map@100 |
0.2426 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1224 |
cosine_accuracy@3 |
0.2755 |
cosine_accuracy@5 |
0.3878 |
cosine_accuracy@10 |
0.5 |
cosine_precision@1 |
0.1224 |
cosine_precision@3 |
0.0918 |
cosine_precision@5 |
0.0776 |
cosine_precision@10 |
0.05 |
cosine_recall@1 |
0.1224 |
cosine_recall@3 |
0.2755 |
cosine_recall@5 |
0.3878 |
cosine_recall@10 |
0.5 |
cosine_ndcg@10 |
0.2931 |
cosine_mrr@10 |
0.2291 |
cosine_map@100 |
0.2445 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0918 |
cosine_accuracy@3 |
0.2551 |
cosine_accuracy@5 |
0.3163 |
cosine_accuracy@10 |
0.4694 |
cosine_precision@1 |
0.0918 |
cosine_precision@3 |
0.085 |
cosine_precision@5 |
0.0633 |
cosine_precision@10 |
0.0469 |
cosine_recall@1 |
0.0918 |
cosine_recall@3 |
0.2551 |
cosine_recall@5 |
0.3163 |
cosine_recall@10 |
0.4694 |
cosine_ndcg@10 |
0.2629 |
cosine_mrr@10 |
0.1992 |
cosine_map@100 |
0.2165 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0816 |
cosine_accuracy@3 |
0.2551 |
cosine_accuracy@5 |
0.3163 |
cosine_accuracy@10 |
0.4796 |
cosine_precision@1 |
0.0816 |
cosine_precision@3 |
0.085 |
cosine_precision@5 |
0.0633 |
cosine_precision@10 |
0.048 |
cosine_recall@1 |
0.0816 |
cosine_recall@3 |
0.2551 |
cosine_recall@5 |
0.3163 |
cosine_recall@10 |
0.4796 |
cosine_ndcg@10 |
0.2611 |
cosine_mrr@10 |
0.194 |
cosine_map@100 |
0.2059 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 882 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 6 tokens
- mean: 90.85 tokens
- max: 198 tokens
|
- min: 8 tokens
- mean: 25.44 tokens
- max: 91 tokens
|
- min: 10 tokens
- mean: 22.33 tokens
- max: 61 tokens
|
- Samples:
anchor |
positive |
negative |
`` !!! note "Update the metadata" ThemetadataofRecordobject is a python dictionary. So to update the metadata of a record, you can iterate over the records and update the metadata by key or usingmetadata.update`. After that, you should update the records in the dataset. |
Can I use Argilla to annotate the metadata of Record objects and update them in the dataset? |
The beautiful scenery of the Argilla valley in Italy is perfect for a relaxing summer vacation. |
git checkout [branch-name] git rebase [default-branch]
<br><br>If everything is right, we need to commit and push the changes to your fork. For that, run the following commands:<br><br> sh
Add the changes to the staging area
git add filename
Commit the changes by writing a proper message
git commit -m "commit-message"
Push the changes to your fork |
Can I commit Argilla's annotation changes and push them to a forked project repository after rebasing from the default branch? |
The beautiful beach in Argilla, Spain, is a popular spot for surfers to catch a wave and enjoy the sunny weather. |
Accessing Record Attributes
The Record object has suggestions, responses, metadata, and vectors attributes that can be accessed directly whilst iterating over records in a dataset.
python for record in dataset.records( with_suggestions=True, with_responses=True, with_metadata=True, with_vectors=True ): print(record.suggestions) print(record.responses) print(record.metadata) print(record.vectors) |
Is it possible to retrieve the suggestions, responses, metadata, and vectors of a Record object at the same time when iterating over a dataset in Argilla? |
The new hiking trail offered breathtaking suggestions for scenic views, responses to environmental concerns, and metadata about the surrounding ecosystem, but it lacked vectors for navigation. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "TripletLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_eval_batch_size
: 4
gradient_accumulation_steps
: 4
learning_rate
: 2e-05
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 8
per_device_eval_batch_size
: 4
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 4
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 3
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.1802 |
5 |
21.701 |
- |
- |
- |
- |
- |
0.3604 |
10 |
21.7449 |
- |
- |
- |
- |
- |
0.5405 |
15 |
21.7453 |
- |
- |
- |
- |
- |
0.7207 |
20 |
21.7168 |
- |
- |
- |
- |
- |
0.9009 |
25 |
21.6945 |
- |
- |
- |
- |
- |
0.973 |
27 |
- |
0.2165 |
0.2445 |
0.2426 |
0.2059 |
0.2604 |
1.0811 |
30 |
21.7248 |
- |
- |
- |
- |
- |
1.2613 |
35 |
21.7322 |
- |
- |
- |
- |
- |
1.4414 |
40 |
21.7367 |
- |
- |
- |
- |
- |
1.6216 |
45 |
21.6821 |
- |
- |
- |
- |
- |
1.8018 |
50 |
21.8392 |
- |
- |
- |
- |
- |
1.9820 |
55 |
21.6441 |
0.2165 |
0.2445 |
0.2426 |
0.2059 |
0.2604 |
2.1622 |
60 |
21.8154 |
- |
- |
- |
- |
- |
2.3423 |
65 |
21.7098 |
- |
- |
- |
- |
- |
2.5225 |
70 |
21.6447 |
- |
- |
- |
- |
- |
2.7027 |
75 |
21.6033 |
- |
- |
- |
- |
- |
2.8829 |
80 |
21.8271 |
- |
- |
- |
- |
- |
2.9189 |
81 |
- |
0.2165 |
0.2445 |
0.2426 |
0.2059 |
0.2604 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}