File size: 34,297 Bytes
7a2e427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:882
- loss:MatryoshkaLoss
- loss:TripletLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: 'hide: footer


    Fields


    Fields in Argilla are define the content of a record that will be reviewed by
    a user.'
  sentences:
  - The tourists tried to hide their footprints in the sand as they walked along the
    deserted beach.
  - Can the rg.Suggestion class be used to handle model predictions in Argilla?
  - Can users customize the fields in Argilla to fit their specific annotation needs?
- source_sentence: "=== \"Single condition\"\n\n=== \"Multiple conditions\"\n\nFilter\
    \ by status\n\nYou can filter records based on their status. The status can be\
    \ pending, draft, submitted, or discarded.\n\n```python\nimport argilla_sdk as\
    \ rg\n\nclient = rg.Argilla(api_url=\"\", api_key=\"\")\n\nworkspace = client.workspaces(\"\
    my_workspace\")\n\ndataset = client.datasets(name=\"my_dataset\", workspace=workspace)\n\
    \nstatus_filter = rg.Query(\n    filter = rg.Filter((\"status\", \"==\", \"submitted\"\
    ))\n)"
  sentences:
  - The submitted application was rejected due to incomplete documentation.
  - How can I apply filters to records by their status in Argilla?
  - Can Argilla's IntegerMetadataProperty support a range of integer values as metadata?
- source_sentence: 'description: In this section, we will provide a step-by-step guide
    to show how to filter and query a dataset.


    Query, filter, and export records


    This guide provides an overview of how to query and filter a dataset in Argilla
    and export records.'
  sentences:
  - The new restaurant in town offers a unique filter coffee that is a must-try for
    coffee enthusiasts.
  - Is it possible to design a user role with tailored access permissions within Argilla?
  - Can Argilla be employed to search and filter datasets based on particular requirements
    or keywords?
- source_sentence: 'hide: footer


    Fields


    Fields in Argilla are define the content of a record that will be reviewed by
    a user.'
  sentences:
  - Is it possible for annotators to tailor Argilla's fields to their unique annotation
    requirements?
  - The tourists tried to hide their footprints in the sand as they walked along the
    deserted beach.
  - Can this partnership with Prolific provide researchers with a broader range of
    annotators to draw from, enhancing the quality of their studies?
- source_sentence: 'hide: footer


    rg.Argilla


    To interact with the Argilla server from python you can use the Argilla class.
    The Argilla client is used to create, get, update, and delete all Argilla resources,
    such as workspaces, users, datasets, and records.


    Usage Examples


    Connecting to an Argilla server


    To connect to an Argilla server, instantiate the Argilla class and pass the api_url
    of the server and the api_key to authenticate.


    ```python

    import argilla_sdk as rg'
  sentences:
  - Can the Argilla class be employed to streamline dataset administration tasks in
    my Argilla server setup?
  - Is it possible to create new data entries in my dataset via Argilla's annotation
    tools?
  - The Argilla flowers were blooming beautifully in the garden.
pipeline_tag: sentence-similarity
model-index:
- name: BGE base ArgillaSDK Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.1326530612244898
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2857142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3877551020408163
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5204081632653061
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1326530612244898
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09523809523809525
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07755102040816327
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05204081632653061
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1326530612244898
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2857142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3877551020408163
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5204081632653061
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3086125494748455
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.24321752510528016
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.26038538311827203
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.10204081632653061
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2755102040816326
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3877551020408163
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5102040816326531
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.10204081632653061
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09183673469387756
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07755102040816327
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05102040816326531
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.10204081632653061
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2755102040816326
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3877551020408163
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5102040816326531
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.29420081448590024
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.22640913508260446
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.24259809105769914
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.12244897959183673
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2755102040816326
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3877551020408163
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.12244897959183673
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09183673469387753
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07755102040816327
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.049999999999999996
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.12244897959183673
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2755102040816326
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3877551020408163
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2931450934182018
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2290937803692905
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.24454883014070852
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.09183673469387756
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.25510204081632654
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3163265306122449
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.46938775510204084
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.09183673469387756
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08503401360544219
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06326530612244897
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.046938775510204075
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.09183673469387756
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.25510204081632654
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3163265306122449
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.46938775510204084
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2629197762336244
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.1992265954000647
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2164845577697655
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.08163265306122448
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.25510204081632654
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3163265306122449
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.47959183673469385
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.08163265306122448
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08503401360544219
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06326530612244897
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04795918367346938
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.08163265306122448
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.25510204081632654
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3163265306122449
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.47959183673469385
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2610977190273289
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.19399497894395853
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.20591442395637935
      name: Cosine Map@100
---

# BGE base ArgillaSDK Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("plaguss/bge-base-argilla-sdk-matryoshka")
# Run inference
sentences = [
    'hide: footer\n\nrg.Argilla\n\nTo interact with the Argilla server from python you can use the Argilla class. The Argilla client is used to create, get, update, and delete all Argilla resources, such as workspaces, users, datasets, and records.\n\nUsage Examples\n\nConnecting to an Argilla server\n\nTo connect to an Argilla server, instantiate the Argilla class and pass the api_url of the server and the api_key to authenticate.\n\n```python\nimport argilla_sdk as rg',
    'Can the Argilla class be employed to streamline dataset administration tasks in my Argilla server setup?',
    'The Argilla flowers were blooming beautifully in the garden.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1327     |
| cosine_accuracy@3   | 0.2857     |
| cosine_accuracy@5   | 0.3878     |
| cosine_accuracy@10  | 0.5204     |
| cosine_precision@1  | 0.1327     |
| cosine_precision@3  | 0.0952     |
| cosine_precision@5  | 0.0776     |
| cosine_precision@10 | 0.052      |
| cosine_recall@1     | 0.1327     |
| cosine_recall@3     | 0.2857     |
| cosine_recall@5     | 0.3878     |
| cosine_recall@10    | 0.5204     |
| cosine_ndcg@10      | 0.3086     |
| cosine_mrr@10       | 0.2432     |
| **cosine_map@100**  | **0.2604** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.102      |
| cosine_accuracy@3   | 0.2755     |
| cosine_accuracy@5   | 0.3878     |
| cosine_accuracy@10  | 0.5102     |
| cosine_precision@1  | 0.102      |
| cosine_precision@3  | 0.0918     |
| cosine_precision@5  | 0.0776     |
| cosine_precision@10 | 0.051      |
| cosine_recall@1     | 0.102      |
| cosine_recall@3     | 0.2755     |
| cosine_recall@5     | 0.3878     |
| cosine_recall@10    | 0.5102     |
| cosine_ndcg@10      | 0.2942     |
| cosine_mrr@10       | 0.2264     |
| **cosine_map@100**  | **0.2426** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1224     |
| cosine_accuracy@3   | 0.2755     |
| cosine_accuracy@5   | 0.3878     |
| cosine_accuracy@10  | 0.5        |
| cosine_precision@1  | 0.1224     |
| cosine_precision@3  | 0.0918     |
| cosine_precision@5  | 0.0776     |
| cosine_precision@10 | 0.05       |
| cosine_recall@1     | 0.1224     |
| cosine_recall@3     | 0.2755     |
| cosine_recall@5     | 0.3878     |
| cosine_recall@10    | 0.5        |
| cosine_ndcg@10      | 0.2931     |
| cosine_mrr@10       | 0.2291     |
| **cosine_map@100**  | **0.2445** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0918     |
| cosine_accuracy@3   | 0.2551     |
| cosine_accuracy@5   | 0.3163     |
| cosine_accuracy@10  | 0.4694     |
| cosine_precision@1  | 0.0918     |
| cosine_precision@3  | 0.085      |
| cosine_precision@5  | 0.0633     |
| cosine_precision@10 | 0.0469     |
| cosine_recall@1     | 0.0918     |
| cosine_recall@3     | 0.2551     |
| cosine_recall@5     | 0.3163     |
| cosine_recall@10    | 0.4694     |
| cosine_ndcg@10      | 0.2629     |
| cosine_mrr@10       | 0.1992     |
| **cosine_map@100**  | **0.2165** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0816     |
| cosine_accuracy@3   | 0.2551     |
| cosine_accuracy@5   | 0.3163     |
| cosine_accuracy@10  | 0.4796     |
| cosine_precision@1  | 0.0816     |
| cosine_precision@3  | 0.085      |
| cosine_precision@5  | 0.0633     |
| cosine_precision@10 | 0.048      |
| cosine_recall@1     | 0.0816     |
| cosine_recall@3     | 0.2551     |
| cosine_recall@5     | 0.3163     |
| cosine_recall@10    | 0.4796     |
| cosine_ndcg@10      | 0.2611     |
| cosine_mrr@10       | 0.194      |
| **cosine_map@100**  | **0.2059** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 882 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                          | negative                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 90.85 tokens</li><li>max: 198 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 25.44 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 22.33 tokens</li><li>max: 61 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | positive                                                                                                                                                                | negative                                                                                                                                                                                                      |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>``<br>!!! note "Update the metadata"<br>    ThemetadataofRecordobject is a python dictionary. So to update the metadata of a record, you can iterate over the records and update the metadata by key or usingmetadata.update`. After that, you should update the records in the dataset.</code>                                                                                                                                                                                                       | <code>Can I use Argilla to annotate the metadata of Record objects and update them in the dataset?</code>                                                               | <code>The beautiful scenery of the Argilla valley in Italy is perfect for a relaxing summer vacation.</code>                                                                                                  |
  | <code>git checkout [branch-name]<br>git rebase [default-branch]<br>```<br><br>If everything is right, we need to commit and push the changes to your fork. For that, run the following commands:<br><br>```sh<br><br>Add the changes to the staging area<br><br>git add filename<br><br>Commit the changes by writing a proper message<br><br>git commit -m "commit-message"<br><br>Push the changes to your fork</code>                                                                                    | <code>Can I commit Argilla's annotation changes and push them to a forked project repository after rebasing from the default branch?</code>                             | <code>The beautiful beach in Argilla, Spain, is a popular spot for surfers to catch a wave and enjoy the sunny weather.</code>                                                                                |
  | <code>Accessing Record Attributes<br><br>The Record object has suggestions, responses, metadata, and vectors attributes that can be accessed directly whilst iterating over records in a dataset.<br><br>python<br>for record in dataset.records(<br>    with_suggestions=True,<br>    with_responses=True,<br>    with_metadata=True,<br>    with_vectors=True<br>    ):<br>    print(record.suggestions)<br>    print(record.responses)<br>    print(record.metadata)<br>    print(record.vectors)</code> | <code>Is it possible to retrieve the suggestions, responses, metadata, and vectors of a Record object at the same time when iterating over a dataset in Argilla?</code> | <code>The new hiking trail offered breathtaking suggestions for scenic views, responses to environmental concerns, and metadata about the surrounding ecosystem, but it lacked vectors for navigation.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "TripletLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 4
- `gradient_accumulation_steps`: 4
- `learning_rate`: 2e-05
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch     | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.1802    | 5      | 21.701        | -                      | -                      | -                      | -                     | -                      |
| 0.3604    | 10     | 21.7449       | -                      | -                      | -                      | -                     | -                      |
| 0.5405    | 15     | 21.7453       | -                      | -                      | -                      | -                     | -                      |
| 0.7207    | 20     | 21.7168       | -                      | -                      | -                      | -                     | -                      |
| 0.9009    | 25     | 21.6945       | -                      | -                      | -                      | -                     | -                      |
| **0.973** | **27** | **-**         | **0.2165**             | **0.2445**             | **0.2426**             | **0.2059**            | **0.2604**             |
| 1.0811    | 30     | 21.7248       | -                      | -                      | -                      | -                     | -                      |
| 1.2613    | 35     | 21.7322       | -                      | -                      | -                      | -                     | -                      |
| 1.4414    | 40     | 21.7367       | -                      | -                      | -                      | -                     | -                      |
| 1.6216    | 45     | 21.6821       | -                      | -                      | -                      | -                     | -                      |
| 1.8018    | 50     | 21.8392       | -                      | -                      | -                      | -                     | -                      |
| 1.9820    | 55     | 21.6441       | 0.2165                 | 0.2445                 | 0.2426                 | 0.2059                | 0.2604                 |
| 2.1622    | 60     | 21.8154       | -                      | -                      | -                      | -                     | -                      |
| 2.3423    | 65     | 21.7098       | -                      | -                      | -                      | -                     | -                      |
| 2.5225    | 70     | 21.6447       | -                      | -                      | -                      | -                     | -                      |
| 2.7027    | 75     | 21.6033       | -                      | -                      | -                      | -                     | -                      |
| 2.8829    | 80     | 21.8271       | -                      | -                      | -                      | -                     | -                      |
| 2.9189    | 81     | -             | 0.2165                 | 0.2445                 | 0.2426                 | 0.2059                | 0.2604                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### TripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification}, 
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->