|
--- |
|
library_name: transformers |
|
license: gemma |
|
language: |
|
- tr |
|
base_model: |
|
- google/gemma-2-9b-it |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: neuralwork/gemma-2-9b-it-tr |
|
results: |
|
- task: |
|
type: multiple-choice |
|
dataset: |
|
type: multiple-choice |
|
name: MMLU_TR_V0.2 |
|
metrics: |
|
- name: 5-shot |
|
type: 5-shot |
|
value: 0.6117 |
|
verified: true |
|
- task: |
|
type: multiple-choice |
|
dataset: |
|
type: multiple-choice |
|
name: Truthful_QA_V0.2 |
|
metrics: |
|
- name: 0-shot |
|
type: 0-shot |
|
value: 0.5583 |
|
verified: true |
|
- task: |
|
type: multiple-choice |
|
dataset: |
|
type: multiple-choice |
|
name: ARC_TR_V0.2 |
|
metrics: |
|
- name: 25-shot |
|
type: 25-shot |
|
value: 0.5640 |
|
verified: true |
|
- task: |
|
type: multiple-choice |
|
dataset: |
|
type: multiple-choice |
|
name: HellaSwag_TR_V0.2 |
|
metrics: |
|
- name: 10-shot |
|
type: 10-shot |
|
value: 0.5646 |
|
verified: true |
|
- task: |
|
type: multiple-choice |
|
dataset: |
|
type: multiple-choice |
|
name: GSM8K_TR_V0.2 |
|
metrics: |
|
- name: 5-shot |
|
type: 5-shot |
|
value: 0.6211 |
|
verified: true |
|
- task: |
|
type: multiple-choice |
|
dataset: |
|
type: multiple-choice |
|
name: Winogrande_TR_V0.2 |
|
metrics: |
|
- name: 5-shot |
|
type: 5-shot |
|
value: 0.6209 |
|
verified: true |
|
--- |
|
|
|
# Gemma-2-9b-it-tr |
|
|
|
Gemma-2-9b-it-tr is a finetuned version of [google/gemma-2-9b-it](https://huggingface.co./google/gemma-2-9b-it) on a carefully curated and manually filtered dataset of 55k question answering and conversational samples in Turkish. |
|
|
|
|
|
## Training Details |
|
**Base model:** [google/gemma-2-9b-it](https://huggingface.co./google/gemma-2-9b-it) |
|
**Training data:** A filtered version of [metedb/turkish_llm_datasets](https://huggingface.co./datasets/metedb/turkish_llm_datasets/) and a small private dataset of 8k conversational samples on various topics. |
|
**Training setup:** We performed supervised fine tuning with LoRA with `rank=128` and `lora_alpha`=64. Training took 4 days on a single RTX 6000 Ada. |
|
|
|
Compared to the base model, we find Gemma-2-9b-tr has superior conversational and reasoning skills. |
|
|
|
## Usage |
|
You can load and use `neuralwork/gemma-2-9b-it-tr`as follows. |
|
|
|
```py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"neuralwork/gemma-2-9b-it-tr", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("neuralwork/gemma-2-9b-it-tr") |
|
|
|
messages = [ |
|
{"role": "user", "content": "Python'da bir öğenin bir listede geçip geçmediğini nasıl kontrol edebilirim?"}, |
|
] |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
outputs = model.generate( |
|
tokenizer(prompt, return_tensors="pt").input_ids.to(model.device), |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9 |
|
) |
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True)[len(prompt):] |
|
print(response) |
|
``` |
|
|
|
|