File size: 3,409 Bytes
dff7dc3
 
66772bf
 
 
 
 
 
e4c540a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dff7dc3
 
46c4744
dff7dc3
46c4744
dff7dc3
 
 
46c4744
 
 
66772bf
 
 
 
46c4744
66772bf
 
 
 
 
 
46c4744
66772bf
 
 
 
 
46c4744
66772bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dff7dc3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
library_name: transformers
license: gemma
language:
  - tr
base_model:
  - google/gemma-2-9b-it
pipeline_tag: text-generation
model-index:
  - name: neuralwork/gemma-2-9b-it-tr
    results:
      - task:
          type: multiple-choice
        dataset:
          type: multiple-choice
          name: MMLU_TR_V0.2
        metrics:
          - name: 5-shot
            type: 5-shot
            value: 0.6117
            verified: true
      - task:
          type: multiple-choice
        dataset:
          type: multiple-choice
          name: Truthful_QA_V0.2
        metrics:
          - name: 0-shot
            type: 0-shot
            value: 0.5583
            verified: true
      - task:
          type: multiple-choice
        dataset:
          type: multiple-choice
          name: ARC_TR_V0.2
        metrics:
          - name: 25-shot
            type: 25-shot
            value: 0.5640
            verified: true
      - task:
          type: multiple-choice
        dataset:
          type: multiple-choice
          name: HellaSwag_TR_V0.2
        metrics:
          - name: 10-shot
            type: 10-shot
            value: 0.5646
            verified: true
      - task:
          type: multiple-choice
        dataset:
          type: multiple-choice
          name: GSM8K_TR_V0.2
        metrics:
          - name: 5-shot
            type: 5-shot
            value: 0.6211
            verified: true
      - task:
          type: multiple-choice
        dataset:
          type: multiple-choice
          name: Winogrande_TR_V0.2
        metrics:
          - name: 5-shot
            type: 5-shot
            value: 0.6209
            verified: true
---

# Gemma-2-9b-it-tr

Gemma-2-9b-it-tr is a finetuned version of [google/gemma-2-9b-it](https://huggingface.co./google/gemma-2-9b-it) on a carefully curated and manually filtered dataset of 55k question answering and conversational samples in Turkish.


## Training Details
**Base model:** [google/gemma-2-9b-it](https://huggingface.co./google/gemma-2-9b-it)  
**Training data:** A filtered version of [metedb/turkish_llm_datasets](https://huggingface.co./datasets/metedb/turkish_llm_datasets/) and a small private dataset of 8k conversational samples on various topics.  
**Training setup:** We performed supervised fine tuning with LoRA with `rank=128` and `lora_alpha`=64. Training took 4 days on a single  RTX 6000 Ada.  

Compared to the base model, we find Gemma-2-9b-tr has superior conversational and reasoning skills.

## Usage
You can load and use `neuralwork/gemma-2-9b-it-tr`as follows.

```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
   "neuralwork/gemma-2-9b-it-tr",
   torch_dtype=torch.bfloat16,
   device_map="auto",
   trust_remote_code=True
)

tokenizer = AutoTokenizer.from_pretrained("neuralwork/gemma-2-9b-it-tr")

messages = [
   {"role": "user", "content": "Python'da bir öğenin bir listede geçip geçmediğini nasıl kontrol edebilirim?"},
]

prompt = tokenizer.apply_chat_template(
   messages,
   tokenize=False,
   add_generation_prompt=True
)

outputs = model.generate(
   tokenizer(prompt, return_tensors="pt").input_ids.to(model.device),
   max_new_tokens=1024,
   do_sample=True,
   temperature=0.7,
   top_p=0.9
)

response = tokenizer.decode(outputs[0], skip_special_tokens=True)[len(prompt):]
print(response)
```