Gemma-2-9b-it-tr

Gemma-2-9b-it-tr is a finetuned version of google/gemma-2-9b-it on a carefully curated and manually filtered dataset of 55k question answering and conversational samples in Turkish.

Training Details

Base model: google/gemma-2-9b-it
Training data: A filtered version of metedb/turkish_llm_datasets and a small private dataset of 8k conversational samples on various topics.
Training setup: We performed supervised fine tuning with LoRA with rank=128 and lora_alpha=64. Training took 4 days on a single RTX 6000 Ada.

Compared to the base model, we find Gemma-2-9b-tr has superior conversational and reasoning skills.

Usage

You can load and use neuralwork/gemma-2-9b-it-tras follows.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
   "neuralwork/gemma-2-9b-it-tr",
   torch_dtype=torch.bfloat16,
   device_map="auto",
   trust_remote_code=True
)

tokenizer = AutoTokenizer.from_pretrained("neuralwork/gemma-2-9b-it-tr")

messages = [
   {"role": "user", "content": "Python'da bir öğenin bir listede geçip geçmediğini nasıl kontrol edebilirim?"},
]

prompt = tokenizer.apply_chat_template(
   messages,
   tokenize=False,
   add_generation_prompt=True
)

outputs = model.generate(
   tokenizer(prompt, return_tensors="pt").input_ids.to(model.device),
   max_new_tokens=1024,
   do_sample=True,
   temperature=0.7,
   top_p=0.9
)

response = tokenizer.decode(outputs[0], skip_special_tokens=True)[len(prompt):]
print(response)
Downloads last month
1,848
Safetensors
Model size
9.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for neuralwork/gemma-2-9b-it-tr

Base model

google/gemma-2-9b
Finetuned
(122)
this model
Quantizations
1 model

Evaluation results