neginashz's picture
End of training
964fb0f verified
---
library_name: transformers
license: apache-2.0
base_model: PrimeIntellect/INTELLECT-1-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- neginashz/rationale-llama-chat-dataset
model-index:
- name: star-sft-intellect-instruct-6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: PrimeIntellect/INTELLECT-1-Instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_config: meta-llama/Llama-3.1-8B-Instruct
#model_type: LlamaForCausalLM
#tokenizer_type: llama3
gpu_memory_limit:
deepspeed: deepspeed_configs/zero2.json
load_in_8bit:
load_in_4bit:
strict: false
chat_template: llama3
datasets:
- path: neginashz/rationale-llama-chat-dataset
type: chat_template
chat_template: llama3
field_messages: messages
message_field_role: role
message_field_content: content
roles:
system:
- system
user:
- user
assistant:
- assistant
#roles_to_train: ["assistant"] # default
# Optional[str]. Which EOS tokens to train on in the conversation. Possible values are:
# - all: train on all EOS tokens
# - turn (default): train on the EOS token at the end of each trainable turn
# - last: train on the last EOS token in the conversation
#train_on_eos: turn
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./star-sft-intellect-6
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: star-sft-intellect-instruct-6
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_checkpointing: true
#gradient_clipping: true
gradient_accumulation_steps: 1
#batch_size: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps:
eval_steps:
save_steps:
evals_per_epoch: 8
saves_per_epoch: 2
eval_max_new_tokens: 128
debug:
weight_decay:
fsdp:
fsdp_config:
hub_model_id: neginashz/star-sft-intellect-instruct-6
hub_strategy:
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: false
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token": <|eot_id|>
```
</details><br>
# star-sft-intellect-instruct-6
This model is a fine-tuned version of [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co./PrimeIntellect/INTELLECT-1-Instruct) on the neginashz/rationale-llama-chat-dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3380
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4428 | 0.1261 | 14 | 0.4024 |
| 0.433 | 0.2523 | 28 | 0.3939 |
| 0.4197 | 0.3784 | 42 | 0.3799 |
| 0.4083 | 0.5045 | 56 | 0.3679 |
| 0.357 | 0.6306 | 70 | 0.3534 |
| 0.3623 | 0.7568 | 84 | 0.3435 |
| 0.3645 | 0.8829 | 98 | 0.3380 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0