File size: 4,300 Bytes
964fb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
library_name: transformers
license: apache-2.0
base_model: PrimeIntellect/INTELLECT-1-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- neginashz/rationale-llama-chat-dataset
model-index:
- name: star-sft-intellect-instruct-6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
base_model: PrimeIntellect/INTELLECT-1-Instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_config: meta-llama/Llama-3.1-8B-Instruct

#model_type: LlamaForCausalLM
#tokenizer_type: llama3

gpu_memory_limit: 

deepspeed: deepspeed_configs/zero2.json

load_in_8bit: 
load_in_4bit:
strict: false

chat_template: llama3
datasets:
  - path: neginashz/rationale-llama-chat-dataset
    type: chat_template
    chat_template: llama3
    field_messages: messages
    message_field_role: role
    message_field_content: content
    roles:
      system:
        - system
      user:
        - user
      assistant:
        - assistant
    #roles_to_train: ["assistant"]  # default
    # Optional[str]. Which EOS tokens to train on in the conversation. Possible values are:
    # - all: train on all EOS tokens
    # - turn (default): train on the EOS token at the end of each trainable turn
    # - last: train on the last EOS token in the conversation
    #train_on_eos: turn

    
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./star-sft-intellect-6

sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true


wandb_project: star-sft-intellect-instruct-6
wandb_entity: 
wandb_watch:
wandb_name: 
wandb_log_model: 

gradient_checkpointing: true
#gradient_clipping: true
gradient_accumulation_steps: 1
#batch_size: 1
micro_batch_size: 1

num_epochs: 1

optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: false

bf16: true
fp16: false
tf32: false

logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps:
eval_steps: 
save_steps:

evals_per_epoch: 8
saves_per_epoch: 2
eval_max_new_tokens: 128

debug:

weight_decay:
fsdp:
fsdp_config:

hub_model_id: neginashz/star-sft-intellect-instruct-6
hub_strategy: 
early_stopping_patience:

resume_from_checkpoint:
auto_resume_from_checkpoints: false

special_tokens:
   pad_token: <|finetune_right_pad_id|>
   eos_token": <|eot_id|>

```

</details><br>

# star-sft-intellect-instruct-6

This model is a fine-tuned version of [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co./PrimeIntellect/INTELLECT-1-Instruct) on the neginashz/rationale-llama-chat-dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3380

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4428        | 0.1261 | 14   | 0.4024          |
| 0.433         | 0.2523 | 28   | 0.3939          |
| 0.4197        | 0.3784 | 42   | 0.3799          |
| 0.4083        | 0.5045 | 56   | 0.3679          |
| 0.357         | 0.6306 | 70   | 0.3534          |
| 0.3623        | 0.7568 | 84   | 0.3435          |
| 0.3645        | 0.8829 | 98   | 0.3380          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0